期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度网络和数据增强的多物体图像识别
被引量:
30
1
作者
吴睿曦
肖秦琨
《国外电子测量技术》
2019年第5期86-90,共5页
针对自然物体识别过程中,自然物体发生改变时传统多物体识别算法识别精度下降的问题,提出了一种基于深度网络和数据增强的物体图像识别算法。该算法应用多层卷积神经网络取代了传统算法对物体的特征进行提取,并且使用数据增强提高识别...
针对自然物体识别过程中,自然物体发生改变时传统多物体识别算法识别精度下降的问题,提出了一种基于深度网络和数据增强的物体图像识别算法。该算法应用多层卷积神经网络取代了传统算法对物体的特征进行提取,并且使用数据增强提高识别的速度和准确度。首先开发一个多物体识别的残差深度网络模型,然后利用数据存储区沿垂直轴随机翻转训练图像,并在水平和垂直方向上随机地将图像数据平移4个像素,最终通过对残差网络的迁移学习实现多物体图像识别。实验结果表明使用数据增强技术能有效解决数据集量数不足、网络模型过度拟合和记忆训练图像的确切细节等问题,并且该网络模型提高了图像识别准确度。
展开更多
关键词
深度学习
卷积神经网络
ResNet
数据增强
下载PDF
职称材料
题名
基于深度网络和数据增强的多物体图像识别
被引量:
30
1
作者
吴睿曦
肖秦琨
机构
西安工业大学(未央校区)
出处
《国外电子测量技术》
2019年第5期86-90,共5页
基金
国家自然科学基金(61671362,61271362)
陕西省自然科学基金(2017JM6041)项目资助
文摘
针对自然物体识别过程中,自然物体发生改变时传统多物体识别算法识别精度下降的问题,提出了一种基于深度网络和数据增强的物体图像识别算法。该算法应用多层卷积神经网络取代了传统算法对物体的特征进行提取,并且使用数据增强提高识别的速度和准确度。首先开发一个多物体识别的残差深度网络模型,然后利用数据存储区沿垂直轴随机翻转训练图像,并在水平和垂直方向上随机地将图像数据平移4个像素,最终通过对残差网络的迁移学习实现多物体图像识别。实验结果表明使用数据增强技术能有效解决数据集量数不足、网络模型过度拟合和记忆训练图像的确切细节等问题,并且该网络模型提高了图像识别准确度。
关键词
深度学习
卷积神经网络
ResNet
数据增强
Keywords
deep learning
convolutional neural networks
ResNet
data augmentation
分类号
TN911.73 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度网络和数据增强的多物体图像识别
吴睿曦
肖秦琨
《国外电子测量技术》
2019
30
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部