期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的计算机辅助诊断系统检出DR胸部正位片中的骨折 被引量:8
1
作者 吴育鑫 薛蕴菁 +3 位作者 段青 孙斌 刘柏韵 陈玉仙 《中国介入影像与治疗学》 北大核心 2020年第11期675-678,共4页
目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨... 目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨折的预测性能。②试验2:随机选取试验1中的397例DR胸片,其中211例存在胸部骨折(共604处骨折)、186例无胸部骨折,记录并比较单独DL-CAD(1组)、单独低年资医师(2组)、DL-CAD辅助低年资医师(3组)、单独高年资医师(4组)的检出结果。结果①试验1:983处骨折中,DL-CAD识别出672处,正确识别641处,误诊31处,敏感度65.21%(641/983),F值为77.46%;361例骨折患者中,DL-CAD识别出320例,正确识别314例,误诊6例,敏感度86.98%(314/361),F值92.22%。②试验2:1、2、3、4组观察者检出骨折的敏感度分别为62.09%(375/604)、61.59%(372/604)、86.75%(524/604)和83.44%(504/604),F值分别为75.38%、74.62%、90.74%及89.84%;3、4组检测效能均高于1、2组(P均<0.001),而1组与2组间、3组与4组间差异均无统计学意义(P均>0.05)。结论DL-CAD对DR胸部正位片中骨折的检出效果较好,且可有效提高低年资放射科医师对胸部骨折的检出效能。 展开更多
关键词 骨折 放射摄影术 胸部 X线透视检查 深度学习 计算机辅助诊断系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部