期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的计算机辅助诊断系统检出DR胸部正位片中的骨折
被引量:
8
1
作者
吴育鑫
薛蕴菁
+3 位作者
段青
孙斌
刘柏韵
陈玉仙
《中国介入影像与治疗学》
北大核心
2020年第11期675-678,共4页
目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨...
目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨折的预测性能。②试验2:随机选取试验1中的397例DR胸片,其中211例存在胸部骨折(共604处骨折)、186例无胸部骨折,记录并比较单独DL-CAD(1组)、单独低年资医师(2组)、DL-CAD辅助低年资医师(3组)、单独高年资医师(4组)的检出结果。结果①试验1:983处骨折中,DL-CAD识别出672处,正确识别641处,误诊31处,敏感度65.21%(641/983),F值为77.46%;361例骨折患者中,DL-CAD识别出320例,正确识别314例,误诊6例,敏感度86.98%(314/361),F值92.22%。②试验2:1、2、3、4组观察者检出骨折的敏感度分别为62.09%(375/604)、61.59%(372/604)、86.75%(524/604)和83.44%(504/604),F值分别为75.38%、74.62%、90.74%及89.84%;3、4组检测效能均高于1、2组(P均<0.001),而1组与2组间、3组与4组间差异均无统计学意义(P均>0.05)。结论DL-CAD对DR胸部正位片中骨折的检出效果较好,且可有效提高低年资放射科医师对胸部骨折的检出效能。
展开更多
关键词
骨折
放射摄影术
胸部
X线透视检查
深度学习
计算机辅助诊断系统
下载PDF
职称材料
题名
基于深度学习的计算机辅助诊断系统检出DR胸部正位片中的骨折
被引量:
8
1
作者
吴育鑫
薛蕴菁
段青
孙斌
刘柏韵
陈玉仙
机构
福建医科大学研究生院
福建医科大学附属协和医院影像科
北京推想科技有限公司
出处
《中国介入影像与治疗学》
北大核心
2020年第11期675-678,共4页
文摘
目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨折的预测性能。②试验2:随机选取试验1中的397例DR胸片,其中211例存在胸部骨折(共604处骨折)、186例无胸部骨折,记录并比较单独DL-CAD(1组)、单独低年资医师(2组)、DL-CAD辅助低年资医师(3组)、单独高年资医师(4组)的检出结果。结果①试验1:983处骨折中,DL-CAD识别出672处,正确识别641处,误诊31处,敏感度65.21%(641/983),F值为77.46%;361例骨折患者中,DL-CAD识别出320例,正确识别314例,误诊6例,敏感度86.98%(314/361),F值92.22%。②试验2:1、2、3、4组观察者检出骨折的敏感度分别为62.09%(375/604)、61.59%(372/604)、86.75%(524/604)和83.44%(504/604),F值分别为75.38%、74.62%、90.74%及89.84%;3、4组检测效能均高于1、2组(P均<0.001),而1组与2组间、3组与4组间差异均无统计学意义(P均>0.05)。结论DL-CAD对DR胸部正位片中骨折的检出效果较好,且可有效提高低年资放射科医师对胸部骨折的检出效能。
关键词
骨折
放射摄影术
胸部
X线透视检查
深度学习
计算机辅助诊断系统
Keywords
fractures,bone
radiography,thoracic
fluoroscopy
deep learning
computer aided diagnosis system
分类号
R683.1 [医药卫生—骨科学]
R816.8 [医药卫生—放射医学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的计算机辅助诊断系统检出DR胸部正位片中的骨折
吴育鑫
薛蕴菁
段青
孙斌
刘柏韵
陈玉仙
《中国介入影像与治疗学》
北大核心
2020
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部