针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation techni...针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation technique, MSET)重构模型整体优化的轴承性能退化评估方法。首先,提取轴承振动信号的多个时域和频域特征、自回归模型系数和三层小波包Renyi熵组成高维多域特征向量,同时将健康状态的高维特征向量构建MSET重构模型的历史记忆矩阵;然后,利用遗传算法对轴承高维特征向量和MSET模型中的历史记忆矩阵进行同步联合优化,从而实现特征优选和重构评估模型的整体自适应优化,进一步提高降维后特征向量与重构模型的匹配性;最后,利用余弦相似度作为故障程度指标构建轴承性能退化评估曲线。西安交大-昇阳科技联合实验室滚动轴承疲劳试验全寿命数据分析结果表明,所提方法具有一定的有效性和可靠性。展开更多
文摘针对传统单域特征指标无法充分表征轴承性能退化的状态信息,而基于多域高维特征向量的重构评估模型存在信息冗余且易受到不一致优化目标的影响而导致模型次优性能的问题,提出一种基于多元状态估计(multivariate state estimation technique, MSET)重构模型整体优化的轴承性能退化评估方法。首先,提取轴承振动信号的多个时域和频域特征、自回归模型系数和三层小波包Renyi熵组成高维多域特征向量,同时将健康状态的高维特征向量构建MSET重构模型的历史记忆矩阵;然后,利用遗传算法对轴承高维特征向量和MSET模型中的历史记忆矩阵进行同步联合优化,从而实现特征优选和重构评估模型的整体自适应优化,进一步提高降维后特征向量与重构模型的匹配性;最后,利用余弦相似度作为故障程度指标构建轴承性能退化评估曲线。西安交大-昇阳科技联合实验室滚动轴承疲劳试验全寿命数据分析结果表明,所提方法具有一定的有效性和可靠性。
文摘滚动轴承性能退化评估是预诊断的提前和基础,对在役滚动轴承实施在线状态监测和性能退化评估具有重要意义。针对概率相似度量评估方法存在模型复杂、容易过早饱和等现象,提出一种基于自回归时序(autoregressive model,简称AR)模型和多元状态估计(multivariate state estimation technique,简称MSET)的滚动轴承性能在线评估方法,其中AR模型用于提取轴承振动信号的状态特征,MSET模型用于重构AR模型系数。首先,提取正常运行状态下振动信号的AR模型系数构建MSET模型的历史记忆矩阵;其次,将待测信号的AR系数作为观测向量输入MSET模型中得到重构后的估计向量;最后,由原始AR系数和重构AR系数分别构造自回归模型,并各自完成对待测信号的时序建模,将两自回归模型所得残差序列的均方根值之差作为性能劣化程度指标。离散实验数据和全寿命疲劳实验数据分析结果表明,该方法能够有效检测早期故障,且具有与轴承故障发展趋势一致性更好等优点。