期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究
1
作者
武锦龙
吴虹麒
+2 位作者
李浩
雷兴鹏
宋海燕
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期186-195,共10页
针对DeepLabV3+语义分割模型计算复杂度高、内存消耗大、难以在计算力有限的移动平台上部署等问题,提出一种改进的轻量化DeepLabV3+深度学习语义分割算法,用于实现无人机荞麦苗期图像的分割与识别。该算法采用RepVGG(Re-parameterizatio...
针对DeepLabV3+语义分割模型计算复杂度高、内存消耗大、难以在计算力有限的移动平台上部署等问题,提出一种改进的轻量化DeepLabV3+深度学习语义分割算法,用于实现无人机荞麦苗期图像的分割与识别。该算法采用RepVGG(Re-parameterization visual geometry group)与MobileViT(Mobile vision transformer)模块融合的方式建立主干网络实现特征提取;同时,在RepVGG网络结构中引入SENet(Squeeze-and-excitation networks)注意力机制,通过利用通道间的相关性,捕获更多的全局语义信息,保证荞麦分割的性能。实验结果表明,与FCN(Fully convolutional networks)、PSPNet(Pyramid scene parsing network)、DenseASPP(Dense atrous spatial pyramid pooling)、DeepLabV3、DeepLabV3+模型相比,本文提出的改进算法在较大程度上降低了模型参数规模,更适合在移动端部署,自建荞麦苗期分割数据集上的语义分割平均像素准确率(Mean pixel accuracy,mPA)和平均交并比(Mean intersection over union,mIoU)分别为97.02%和91.45%,总体参数量、浮点运算次数(Floating-point operations,FLOPs)和推理速度分别为9.01×10^(6)、8.215×10^(10)、37.83 f/s,综合表现最优。在全尺寸图像分割中,训练模型对不同飞行高度的荞麦苗期分割的mPA和mIoU均能满足要求,也具有较好的分割能力和推理速度,该算法可为后期荞麦补种、施肥养护和长势监测等提供重要技术支持,进而促进小杂粮产业智能化发展。
展开更多
关键词
荞麦苗期
无人机遥感
图像语义分割
DeepLabV3+
轻量化
下载PDF
职称材料
题名
基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究
1
作者
武锦龙
吴虹麒
李浩
雷兴鹏
宋海燕
机构
山西农业大学农业工程学院
山西农业大学信息科学与工程学院
旱作农业机械关键技术与装备山西省重点实验室
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期186-195,共10页
基金
国家重点研发计划项目(2021YFD1600602-09)
山西省基础研究计划项目(202203021212414、202303021222067)。
文摘
针对DeepLabV3+语义分割模型计算复杂度高、内存消耗大、难以在计算力有限的移动平台上部署等问题,提出一种改进的轻量化DeepLabV3+深度学习语义分割算法,用于实现无人机荞麦苗期图像的分割与识别。该算法采用RepVGG(Re-parameterization visual geometry group)与MobileViT(Mobile vision transformer)模块融合的方式建立主干网络实现特征提取;同时,在RepVGG网络结构中引入SENet(Squeeze-and-excitation networks)注意力机制,通过利用通道间的相关性,捕获更多的全局语义信息,保证荞麦分割的性能。实验结果表明,与FCN(Fully convolutional networks)、PSPNet(Pyramid scene parsing network)、DenseASPP(Dense atrous spatial pyramid pooling)、DeepLabV3、DeepLabV3+模型相比,本文提出的改进算法在较大程度上降低了模型参数规模,更适合在移动端部署,自建荞麦苗期分割数据集上的语义分割平均像素准确率(Mean pixel accuracy,mPA)和平均交并比(Mean intersection over union,mIoU)分别为97.02%和91.45%,总体参数量、浮点运算次数(Floating-point operations,FLOPs)和推理速度分别为9.01×10^(6)、8.215×10^(10)、37.83 f/s,综合表现最优。在全尺寸图像分割中,训练模型对不同飞行高度的荞麦苗期分割的mPA和mIoU均能满足要求,也具有较好的分割能力和推理速度,该算法可为后期荞麦补种、施肥养护和长势监测等提供重要技术支持,进而促进小杂粮产业智能化发展。
关键词
荞麦苗期
无人机遥感
图像语义分割
DeepLabV3+
轻量化
Keywords
buckwheat at seedling stage
UAV remote sensing
image segmentation
DeepLabV3+
lightweight
分类号
TP753 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究
武锦龙
吴虹麒
李浩
雷兴鹏
宋海燕
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部