The cure reaction of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) epoxy resin with 4,4'-diaminodiphenyl methane (DDM) has been studied by using DSC. Instead of one exothermic peak, two exothermic peaks, ...The cure reaction of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) epoxy resin with 4,4'-diaminodiphenyl methane (DDM) has been studied by using DSC. Instead of one exothermic peak, two exothermic peaks, indicative of a complex reaction mechanism, are shown in the DSC curve of TGDDM-DDM mixtures in nonisothermal cure experiments when the content of DDM is lower than stoichiometric ratio. The result of the kinetic analysis of the cure reaction shows that the activation energy of the lower temperature exotherm peak is about 56 kJ/mol and that of the higher temperature exotherm peak is about 136 kJ/mol. The lower temperature cure reaction peak can be attributed to the primary amine-epoxide and secondary amine-epoxide reactions, and the higher temperature cure reaction peak can be attributed to the epoxide-hydroxy reaction under catalysis of tertiary amine in the TGDDM epoxy resin. Because the network density of the cured epoxy resin is determined by these two reactions, the content of DDM has little effect on the glass transition temperature of cured epoxy resin.展开更多
Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with comp...Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends.展开更多
基金The project supported by National Natural Science Foundation of China.
文摘The cure reaction of tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM) epoxy resin with 4,4'-diaminodiphenyl methane (DDM) has been studied by using DSC. Instead of one exothermic peak, two exothermic peaks, indicative of a complex reaction mechanism, are shown in the DSC curve of TGDDM-DDM mixtures in nonisothermal cure experiments when the content of DDM is lower than stoichiometric ratio. The result of the kinetic analysis of the cure reaction shows that the activation energy of the lower temperature exotherm peak is about 56 kJ/mol and that of the higher temperature exotherm peak is about 136 kJ/mol. The lower temperature cure reaction peak can be attributed to the primary amine-epoxide and secondary amine-epoxide reactions, and the higher temperature cure reaction peak can be attributed to the epoxide-hydroxy reaction under catalysis of tertiary amine in the TGDDM epoxy resin. Because the network density of the cured epoxy resin is determined by these two reactions, the content of DDM has little effect on the glass transition temperature of cured epoxy resin.
基金Project supported by the National Natural Science Foundation of China.
文摘Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends.