针对IRRT*(informed rapidly-exploring random trees star)算法在机器人路径规划中搜索效率低、收敛速度慢的问题,将APF(artificial potential field method)与IRRT*算法相结合,提出APF-IRRT*混合算法.仿真实验结果表明:相对于其他3种...针对IRRT*(informed rapidly-exploring random trees star)算法在机器人路径规划中搜索效率低、收敛速度慢的问题,将APF(artificial potential field method)与IRRT*算法相结合,提出APF-IRRT*混合算法.仿真实验结果表明:相对于其他3种算法,APF-IRRT*算法的搜索时间、节点数目、路径长度的数值均最小;APF-IRRT*算法对地图的复杂性以及面积的变化均有较强的适应能力.展开更多
文摘针对IRRT*(informed rapidly-exploring random trees star)算法在机器人路径规划中搜索效率低、收敛速度慢的问题,将APF(artificial potential field method)与IRRT*算法相结合,提出APF-IRRT*混合算法.仿真实验结果表明:相对于其他3种算法,APF-IRRT*算法的搜索时间、节点数目、路径长度的数值均最小;APF-IRRT*算法对地图的复杂性以及面积的变化均有较强的适应能力.