期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于元学习自适应的小样本语音合成
1
作者 吴郅昊 迟子秋 +1 位作者 肖婷 王喆 《计算机应用》 CSCD 北大核心 2024年第5期1629-1635,共7页
在小样本条件下的语音合成(TTS)要求在仅有少量样本的情况下合成与原说话人相似的语音,然而现有的小样本语音合成面临如下问题:如何快速适配新说话人,并且在保证语音质量的情况下提高生成语音与说话人的相似性。现有模型在适配新说话人... 在小样本条件下的语音合成(TTS)要求在仅有少量样本的情况下合成与原说话人相似的语音,然而现有的小样本语音合成面临如下问题:如何快速适配新说话人,并且在保证语音质量的情况下提高生成语音与说话人的相似性。现有模型在适配新说话人的过程中,很少考虑到在不同适配阶段模型特征的变化规律,导致生成语音不能在保证语音质量的情况下快速提升语音相似性。为了解决上述问题,提出一种使用元学习指导模型适配新说话人的方法,模型中通过元特征模块对适配过程进行指导,在适配新说话人过程中提升语音相似度的同时保证生成语音质量;并通过步数编码器区分不同的适配阶段,以提升模型适配新说话人的速度。在Libri-TTS与VCTK数据集上通过主观与客观评价指标,在不同的适配步数下对现有快速适配新说话人的方法进行了比较,实验结果表明所提方法动态时间规整的梅尔倒谱失真(DTW-MCD)分别为7.4502与6.5243,在合成语音的相似度上优于其他元学习方法,并且能够更快适配新的说话人。 展开更多
关键词 小样本生成 语音合成 元学习 说话人适配 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部