针对反照率直接估算中多元线性回归方法难以拟合反照率估算中的非线性特征的问题,引入基于梯度提升决策树机器学习方法对GLASS(global land surface satellite products)反照率产品算法中的多元线性回归(multiple linear regression,MLR...针对反照率直接估算中多元线性回归方法难以拟合反照率估算中的非线性特征的问题,引入基于梯度提升决策树机器学习方法对GLASS(global land surface satellite products)反照率产品算法中的多元线性回归(multiple linear regression,MLR)直接估算算法进行改进,并将梯度提升决策树算法(gradient boost decision tree,GBDT)结果同原有方法进行对比,同时利用地面站点观测反照率评价本文算法效果。结果表明,多元线性回归方法平均RMSE为0.017到0.02,梯度提升决策树方法平均RMSE为0.009到0.013,梯度提升决策树方法的估算精度较原多元线性回归方法精度有较大提升,表明新型机器学习方法在优化遥感经验或半经验模型中具有重要潜力。同时地面验证结果表明,本文算法相比于GLASS V3反照率产品在RMSE和绝对偏差上相对提升4%和60%。展开更多