Acyl-coenzyme A thioesters(acyl-CoAs)denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways.The great diversity in polarity between short-and long-chain acylCoAs makes it techn...Acyl-coenzyme A thioesters(acyl-CoAs)denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways.The great diversity in polarity between short-and long-chain acylCoAs makes it technically challenging to cover an inclusive range of acyl-CoAs within a single method.Levels of acyl-carnitines,which function to convey fatty acyls into mitochondria matrix forβ-oxidation,indicate the efficiency of mitochondrial import and utilization of corresponding acyl-CoAs.Herein,we report a robust,integrated platform to allow simultaneous quantitation of endogenous acyl-CoAs and acyl-carnitines.Using this method,we monitored changes in intermediary lipid profiles across Drosophila development under control(ND)and high-fat diet(HFD).We observed specific accumulations of medium-chain(C8-C12)and long-chain(≥C16)acyl-carnitines distinct to L3 larval and pupal stages,respectively.These observations suggested development-specific,chain length-dependent disparity in metabolic fates of acyl-CoAs across Drosophila development,which was validated by deploying the same platform to monitor isotope incorporation introduced from labelled 12:0 and 16:0 fatty acids into extra-and intra-mitochondrial acyl-CoA pools.We found that pupal mitochondria preferentially import and oxidise C12:0-CoAs(accumulated as C12:0-carnitines in L3 stage)over C16:0-CoAs.Preferential oxidation of medium-chain acyl-CoAs limits mitochondrial utilization of long-chain acyl-CoAs(C16-C18),leading to pupal-specific accumulation of long-chain acyl-carnitines mediated by enhanced CPT1-6 A activity.HFD skewed C16:0-CoAs towards catabolism over anabolism in pupa,thereby adversely affecting overall development.Our developed platform emphasizes the importance of integrating biological knowledge in the design of pathway-oriented platforms to derive maximal physiological insights from analysis of complex biological systems.展开更多
基金supported by the National Key R&D Program of China(2018YFA0506900,2018YFA0800901)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA12030211)the National Natural Science Foundation of China(31671226,31871194)。
文摘Acyl-coenzyme A thioesters(acyl-CoAs)denote a key class of intermediary metabolites that lies at the hub of major metabolic pathways.The great diversity in polarity between short-and long-chain acylCoAs makes it technically challenging to cover an inclusive range of acyl-CoAs within a single method.Levels of acyl-carnitines,which function to convey fatty acyls into mitochondria matrix forβ-oxidation,indicate the efficiency of mitochondrial import and utilization of corresponding acyl-CoAs.Herein,we report a robust,integrated platform to allow simultaneous quantitation of endogenous acyl-CoAs and acyl-carnitines.Using this method,we monitored changes in intermediary lipid profiles across Drosophila development under control(ND)and high-fat diet(HFD).We observed specific accumulations of medium-chain(C8-C12)and long-chain(≥C16)acyl-carnitines distinct to L3 larval and pupal stages,respectively.These observations suggested development-specific,chain length-dependent disparity in metabolic fates of acyl-CoAs across Drosophila development,which was validated by deploying the same platform to monitor isotope incorporation introduced from labelled 12:0 and 16:0 fatty acids into extra-and intra-mitochondrial acyl-CoA pools.We found that pupal mitochondria preferentially import and oxidise C12:0-CoAs(accumulated as C12:0-carnitines in L3 stage)over C16:0-CoAs.Preferential oxidation of medium-chain acyl-CoAs limits mitochondrial utilization of long-chain acyl-CoAs(C16-C18),leading to pupal-specific accumulation of long-chain acyl-carnitines mediated by enhanced CPT1-6 A activity.HFD skewed C16:0-CoAs towards catabolism over anabolism in pupa,thereby adversely affecting overall development.Our developed platform emphasizes the importance of integrating biological knowledge in the design of pathway-oriented platforms to derive maximal physiological insights from analysis of complex biological systems.