为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪...为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪、红外光谱、工业CT及分子模拟,对不同木质素纤维掺量(质量分数分别为0、0.1%、0.2%、0.3%、0.4%、0.5%)的地聚物进行力学特性、结构及微观形貌测试,分析不同木质素纤维掺量对CFBG强韧化机理的影响。结果表明:当木质素纤维掺量为0.3%时,CFBG抗折强度和断裂韧性达到最大值,分别为18.6 MPa、9.6 MPa·m^(1/2);随着木质素纤维掺量增加,地聚物抗压强度和断裂韧性呈上升趋势;掺入木质素纤维可促进地聚物中莫来石晶相、类沸石晶相及C-S-H凝胶的生成,显著改变地聚物的结构;木质素纤维的掺入可降低地聚物表面孔隙,改变地聚物破坏形式,延长裂缝的扩展路径。研究结果可为促进工业固废高附加值资源化利用提供理论依据。展开更多
文摘为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪、红外光谱、工业CT及分子模拟,对不同木质素纤维掺量(质量分数分别为0、0.1%、0.2%、0.3%、0.4%、0.5%)的地聚物进行力学特性、结构及微观形貌测试,分析不同木质素纤维掺量对CFBG强韧化机理的影响。结果表明:当木质素纤维掺量为0.3%时,CFBG抗折强度和断裂韧性达到最大值,分别为18.6 MPa、9.6 MPa·m^(1/2);随着木质素纤维掺量增加,地聚物抗压强度和断裂韧性呈上升趋势;掺入木质素纤维可促进地聚物中莫来石晶相、类沸石晶相及C-S-H凝胶的生成,显著改变地聚物的结构;木质素纤维的掺入可降低地聚物表面孔隙,改变地聚物破坏形式,延长裂缝的扩展路径。研究结果可为促进工业固废高附加值资源化利用提供理论依据。