In the paper the wave attenuation in a two layer fluid system is studied.The fluid in the top layer is ideal and that in the lower layer is the Voigt model of the viscoelastic medium.A dispersion relation is derived a...In the paper the wave attenuation in a two layer fluid system is studied.The fluid in the top layer is ideal and that in the lower layer is the Voigt model of the viscoelastic medium.A dispersion relation is derived and the rate of the wave decay is computed.The approximate explicit expressions of the decay rate for different water depth are given,where the viscoelasticity is either very large or very small.Compared with the numerical results,our results are very accurate,which can be used by an engineer.展开更多
The hydrodynamic interaction between two vertical cylinders in water waves is investigated based on the linearized potential flow theory. One of the two cylinders is fixed at the bottom while the other is articulated ...The hydrodynamic interaction between two vertical cylinders in water waves is investigated based on the linearized potential flow theory. One of the two cylinders is fixed at the bottom while the other is articulated at the bottom and oscillates with small amplitudes in the direction of the incident wave. Both the diffracted wave and the radiation wave are studied in the present paper. A simple analytical expression for the velocity potential on the surface of each cylinder is obtained by means of Graf's addition theorem. The wave-excited forces and moments on the cylinders, the added masses and the radiation damping coefficients of the oscillating cylinder are all expressed explicitly in series form. The coefficients of the series are determined by solving algebraic equations. Several numerical examples are given to illustrate the effects of various parameters, such as the separation distance, the relative size of the cylinders, and the incident angle, on the first-order and steady second-order forces, the added masses and radiation-damping coefficients as well as the response of the oscillating cylinder.展开更多
Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Mi...Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.展开更多
The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, e...The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, equations of a bubble motion are obtained and solved. It is found that the nonlinear effect increases with the increase of the bubble radius and the rising time. The rising time and the motion orbit are given by calculations and experiments. When the radius of a bubble is smaller than 0.5mm and the distance from the free surface is greater than the wave height, the results of the present theory are in close agreement with measurements.展开更多
基金The project supported by the National Natural Science Foundation of China by the Lianyungang Port Office,China
文摘In the paper the wave attenuation in a two layer fluid system is studied.The fluid in the top layer is ideal and that in the lower layer is the Voigt model of the viscoelastic medium.A dispersion relation is derived and the rate of the wave decay is computed.The approximate explicit expressions of the decay rate for different water depth are given,where the viscoelasticity is either very large or very small.Compared with the numerical results,our results are very accurate,which can be used by an engineer.
文摘The hydrodynamic interaction between two vertical cylinders in water waves is investigated based on the linearized potential flow theory. One of the two cylinders is fixed at the bottom while the other is articulated at the bottom and oscillates with small amplitudes in the direction of the incident wave. Both the diffracted wave and the radiation wave are studied in the present paper. A simple analytical expression for the velocity potential on the surface of each cylinder is obtained by means of Graf's addition theorem. The wave-excited forces and moments on the cylinders, the added masses and the radiation damping coefficients of the oscillating cylinder are all expressed explicitly in series form. The coefficients of the series are determined by solving algebraic equations. Several numerical examples are given to illustrate the effects of various parameters, such as the separation distance, the relative size of the cylinders, and the incident angle, on the first-order and steady second-order forces, the added masses and radiation-damping coefficients as well as the response of the oscillating cylinder.
文摘Standing soliton was studied by numerical simulation of ifs governing equation, a cubic Schrodiger equation with a complex conjugate term, which was derived by Miles and was accepted. The value of linear damping in Miles equation was studied. Calculations showed that linear damping effects strongly on the formation of a standing soliton and Laedke and Spatschek stable condition is only a necessary condition, but not a sufficient one. The interaction of two standing solitons was simulated. Simulations showed that the interaction pattern depends on system parameters. Calculations for the different initial condition and its development indicated that a stable standing soliton can be fanned only for proper initial disturbance, otherwise the disturbance will disappear or develop into several solitons.
基金The project supported by the National Natural Science Foundation of China
文摘The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, equations of a bubble motion are obtained and solved. It is found that the nonlinear effect increases with the increase of the bubble radius and the rising time. The rising time and the motion orbit are given by calculations and experiments. When the radius of a bubble is smaller than 0.5mm and the distance from the free surface is greater than the wave height, the results of the present theory are in close agreement with measurements.