期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的股票趋势预测算法 被引量:2
1
作者 周润佳 《计算机与现代化》 2023年第1期69-73,107,共6页
针对股票趋势预测难的问题,提出一种利用CNN和LSTM进行特征提取,并结合注意力机制和对抗训练的股票趋势预测算法——AACL(Adversarial Attentive CNN-LSTM)算法。该算法利用CNN提取股票的整体趋势信息,LSTM提取股票的短期波动信息,并通... 针对股票趋势预测难的问题,提出一种利用CNN和LSTM进行特征提取,并结合注意力机制和对抗训练的股票趋势预测算法——AACL(Adversarial Attentive CNN-LSTM)算法。该算法利用CNN提取股票的整体趋势信息,LSTM提取股票的短期波动信息,并通过注意力机制将多个股票联系起来,捕捉股票之间的涨跌关系。算法还引入了对抗训练,通过对数据进行干扰,提高算法的鲁棒性。为了验证算法的有效性,在KDD17、ACL18和China50这3个数据集上进行实验,并与现有的算法进行比较,实验结果表明本文提出的算法可以获得最优的预测效果。 展开更多
关键词 神经网络 注意力机制 对抗训练 股票趋势预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部