-
题名基于深度学习的股票趋势预测算法
被引量:2
- 1
-
-
作者
周润佳
-
机构
华南师范大学计算机学院
-
出处
《计算机与现代化》
2023年第1期69-73,107,共6页
-
文摘
针对股票趋势预测难的问题,提出一种利用CNN和LSTM进行特征提取,并结合注意力机制和对抗训练的股票趋势预测算法——AACL(Adversarial Attentive CNN-LSTM)算法。该算法利用CNN提取股票的整体趋势信息,LSTM提取股票的短期波动信息,并通过注意力机制将多个股票联系起来,捕捉股票之间的涨跌关系。算法还引入了对抗训练,通过对数据进行干扰,提高算法的鲁棒性。为了验证算法的有效性,在KDD17、ACL18和China50这3个数据集上进行实验,并与现有的算法进行比较,实验结果表明本文提出的算法可以获得最优的预测效果。
-
关键词
神经网络
注意力机制
对抗训练
股票趋势预测
-
Keywords
neural network
attention mechanism
adversarial training
stock movement prediction
-
分类号
TP181
[自动化与计算机技术—控制理论与控制工程]
-