期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种自适应形态滤波算法及其在轴承故障诊断中的应用 被引量:13
1
作者 张西宁 唐春华 +1 位作者 周融通 雷威 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第12期1-8,37,共9页
针对工程实际中的故障诊断受限于零部件故障先验知识缺乏、振动信号调制及噪声成分复杂等问题,提出了一种滚动轴承故障诊断的自适应形态学滤波方法。在对基本形态算子和组合形态算子原理分析的基础上,利用非线性滤波器幅频响应分析法,... 针对工程实际中的故障诊断受限于零部件故障先验知识缺乏、振动信号调制及噪声成分复杂等问题,提出了一种滚动轴承故障诊断的自适应形态学滤波方法。在对基本形态算子和组合形态算子原理分析的基础上,利用非线性滤波器幅频响应分析法,获得了不同形态算子的滤波特性,定量分析了结构元素尺度参数对滤波效果的影响。对典型的滚动轴承故障模型及振动信号进行分析,获得了故障轴承运行的主要特征,确定了结构元素尺度参数选定策略,数值仿真实验验证了该方法的可行性。进行滚动轴承实验振动信号分析,结果表明,与参数优化的组合形态滤波差值算子(CMFH)相比,所提方法至少将信号的特征幅值能量比提高了29.8%、算法效率提高了50.0%,可清晰、准确、快速地将滚动轴承外圈和内圈的故障特征呈现出来,进一步证明了该方法在机械故障诊断应用上的可靠性和实用性。 展开更多
关键词 数学形态学 自适应滤波 结构元素 滚动轴承 故障诊断
下载PDF
基于多维缩放和随机森林的轴承故障诊断方法 被引量:21
2
作者 张西宁 张雯雯 +1 位作者 周融通 余迪 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第8期1-7,共7页
为快速准确识别轴承的运行状态,提出了一种基于多维缩放和随机森林的轴承故障诊断方法。该方法采用函数型数据分析,得到轴承振动信号自相关函数的拟合系数,构造故障特征集;使用网格搜索法优化随机森林参数,得到特征重要性排序;然后使用... 为快速准确识别轴承的运行状态,提出了一种基于多维缩放和随机森林的轴承故障诊断方法。该方法采用函数型数据分析,得到轴承振动信号自相关函数的拟合系数,构造故障特征集;使用网格搜索法优化随机森林参数,得到特征重要性排序;然后使用多维缩放方法对特征选择后的故障特征集进行降维;最后采用随机森林对降维后的故障特征进行诊断识别。为验证所提方法的有效性,开展了正常、内圈故障、外圈故障、滚子故障状态下的轴承振动实验,结果表明,函数型数据分析的特征提取方式能有效表征不同状态轴承振动信号的不同特征,与t分布随机邻域嵌入和主分量分析方法相比,多维缩放方法具有更高的类间距和类内距的比值,且优势明显,各类状态的诊断准确率均高达100%,较使用原始特征集的随机森林平均准确率提高了5%。 展开更多
关键词 函数型数据分析 多维缩放 随机森林 轴承故障诊断
下载PDF
采用单类随机森林的异常检测方法及应用 被引量:12
3
作者 张西宁 张雯雯 +1 位作者 周融通 向宙 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第2期1-8,157,共9页
针对随机森林算法不能处理异常检测问题的局限,提出了一种基于改进格雷厄姆扫描法的单类随机森林,实现了随机森林在只有单类样本时的分类应用。在格雷厄姆扫描法的算法原理以及操作流程的基础上,引入了边界软化率的概念,增大了数据点外... 针对随机森林算法不能处理异常检测问题的局限,提出了一种基于改进格雷厄姆扫描法的单类随机森林,实现了随机森林在只有单类样本时的分类应用。在格雷厄姆扫描法的算法原理以及操作流程的基础上,引入了边界软化率的概念,增大了数据点外边界的柔性。利用射线法生成与输入样本反分布的数据集,使得传统的随机森林模型经过训练后成为拥有精细决策边界的单类随机森林。训练好的模型输出待测数据的异常概率。在XJTU-SY轴承数据集上验证了所提方法对于滚动轴承状态监测的有效性。分析结果表明,单类随机森林能准确分离正常运行数据与退化数据,并且可以通过调整边界软化率来实现异常值检测准确率与召回率的平衡。当预测概率阈值取0.5时,硬边界的单类随机森林可以实现98.37%的检测准确率以及0.972的召回率,而0.05的边界软化率可以得到最小的退化后期预测均方根误差,较硬边界降低1.01%。随着阈值的增大,边界软化率提供了有力的召回率保障。 展开更多
关键词 格雷厄姆扫描法 射线法 单类随机森林 特征融合 轴承状态监测
下载PDF
局部倒频谱编辑方法及其在齿轮箱微弱轴承故障特征提取中的应用 被引量:9
4
作者 张西宁 周融通 +1 位作者 郭清林 张雯雯 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第12期1-9,共9页
针对齿轮箱滚动轴承的微弱故障诊断常常由于背景噪声、离散频率成分干扰,造成轴承故障漏诊,不利于设备的长期稳定运行的问题,将局部倒频谱(LC)理论与倒频谱编辑(CEP)方法相结合,提出一种局部倒频谱编辑方法(LCEP),解决了LC无法进行时域... 针对齿轮箱滚动轴承的微弱故障诊断常常由于背景噪声、离散频率成分干扰,造成轴承故障漏诊,不利于设备的长期稳定运行的问题,将局部倒频谱(LC)理论与倒频谱编辑(CEP)方法相结合,提出一种局部倒频谱编辑方法(LCEP),解决了LC无法进行时域信号重构的问题。针对分析频带选择这一关键性问题,在齿轮箱滚动轴承微弱故障诊断中给出了选择准则。调整后的局部倒谱可以成功提取复杂振动信号中的干扰成分,实现对主要干扰成分的编辑,抑制其对微弱故障诊断的干扰。将所提方法用作信号预处理,对重构时域信号做希尔伯特变换和包络分析,建立齿轮箱振动信号模型,利用仿真信号和实验信号验证了方法的有效性。将所提方法与CEP方法和倒谱预白化(CPW)方法对比表明,LCEP结合包络谱(ES)诊断方法在强背景噪声、多频率成分干扰及复杂调幅调频的齿轮箱振动信号中,成功提取轴承外圈微弱故障特征,特征明显性提高了6倍。 展开更多
关键词 振动信号 局部倒频谱 轴承微弱故障检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部