为实现高效、精准的高光谱图像分类,该文利用低秩矩阵恢复从原始数据中提取低维特征,实现高光谱图像的压缩表示。针对高光谱应用的特殊性,该文算法基于结构相似性度量(Structural Similarity Index Measurement,SSIM)对矩阵恢复过程提...为实现高效、精准的高光谱图像分类,该文利用低秩矩阵恢复从原始数据中提取低维特征,实现高光谱图像的压缩表示。针对高光谱应用的特殊性,该文算法基于结构相似性度量(Structural Similarity Index Measurement,SSIM)对矩阵恢复过程提出了信噪分离约束,有助于选择更优的模型参数,增强表示的准确性。实验证明,相比现有相关方法,该文算法能够有效去除高光谱图像中的噪声,表示结果更为鲁棒;在仅使用低维特征时,仍能达到较高的分类精度。展开更多
文摘为实现高效、精准的高光谱图像分类,该文利用低秩矩阵恢复从原始数据中提取低维特征,实现高光谱图像的压缩表示。针对高光谱应用的特殊性,该文算法基于结构相似性度量(Structural Similarity Index Measurement,SSIM)对矩阵恢复过程提出了信噪分离约束,有助于选择更优的模型参数,增强表示的准确性。实验证明,相比现有相关方法,该文算法能够有效去除高光谱图像中的噪声,表示结果更为鲁棒;在仅使用低维特征时,仍能达到较高的分类精度。