期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度特征和反向注意力的肝脏肿瘤自动分割方法
1
作者
张瑞
唐乔湛
+1 位作者
李斯卉
宋江玲
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期964-973,共10页
肝脏肿瘤分割旨在定位肝脏肿瘤区域,以辅助医生进行精准诊治。鉴于深度学习能自动学习医学图像中复杂的特征和结构,已成为肝脏肿瘤分割的主流方法之一。但肝脏肿瘤的大小、形态存在显著差异及边缘模糊等问题,限制了深度学习模型的分割...
肝脏肿瘤分割旨在定位肝脏肿瘤区域,以辅助医生进行精准诊治。鉴于深度学习能自动学习医学图像中复杂的特征和结构,已成为肝脏肿瘤分割的主流方法之一。但肝脏肿瘤的大小、形态存在显著差异及边缘模糊等问题,限制了深度学习模型的分割性能。基于此,该文提出了一种融合多尺度特征和反向注意力机制的深度网络,并用于肝脏肿瘤的自动分割。具体地,基于U-Net模型的框架,分别设计了多尺度特征提取模块和基于深度监督的反向注意力模块,使得网络能根据分割目标的大小自适应地选择不同尺度的特征,并引导网络关注分割目标的边缘特征,进而提高网络的边缘分割能力。此外,设计了一种新的混合损失,以解决医学图像分割中的类别不平衡问题。最后,在MICCAI2017 LiTS挑战赛数据集的数值实验结果表明,所提方法的Dice系数、平均对称表面距离ASSD分别为76.12%和3.25 mm。
展开更多
关键词
肝脏肿瘤分割
多尺度特征提取
反向注意力
下载PDF
职称材料
题名
基于多尺度特征和反向注意力的肝脏肿瘤自动分割方法
1
作者
张瑞
唐乔湛
李斯卉
宋江玲
机构
西北大学医学大数据研究中心
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期964-973,共10页
基金
国家自然科学基金(12071369,62006189)
陕西省自然科学基金(2021JQ-430,2023-JC-QN-0028)
中国博士后科学基金(2022M722580)。
文摘
肝脏肿瘤分割旨在定位肝脏肿瘤区域,以辅助医生进行精准诊治。鉴于深度学习能自动学习医学图像中复杂的特征和结构,已成为肝脏肿瘤分割的主流方法之一。但肝脏肿瘤的大小、形态存在显著差异及边缘模糊等问题,限制了深度学习模型的分割性能。基于此,该文提出了一种融合多尺度特征和反向注意力机制的深度网络,并用于肝脏肿瘤的自动分割。具体地,基于U-Net模型的框架,分别设计了多尺度特征提取模块和基于深度监督的反向注意力模块,使得网络能根据分割目标的大小自适应地选择不同尺度的特征,并引导网络关注分割目标的边缘特征,进而提高网络的边缘分割能力。此外,设计了一种新的混合损失,以解决医学图像分割中的类别不平衡问题。最后,在MICCAI2017 LiTS挑战赛数据集的数值实验结果表明,所提方法的Dice系数、平均对称表面距离ASSD分别为76.12%和3.25 mm。
关键词
肝脏肿瘤分割
多尺度特征提取
反向注意力
Keywords
liver tumor segmentation
multi-scale feature extraction
reverse attention
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度特征和反向注意力的肝脏肿瘤自动分割方法
张瑞
唐乔湛
李斯卉
宋江玲
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部