离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式...离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能.展开更多
文摘离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能.