Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calcu...Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calculation and experimental measurement demonstrate that TPA coefficient is polarization dependent. For homogeneous materials, probe beam attenuation arises from the imaginary part of diagonal and off-diagonal components of third-order nonlinear susceptibilities.展开更多
文摘Considering two beams propagate in semiconductor crystal, this paper discusses the polarization dependence of pump beam-induced intensity attenuation of probe beam due to two-photon absorption (TPA). Numerical calculation and experimental measurement demonstrate that TPA coefficient is polarization dependent. For homogeneous materials, probe beam attenuation arises from the imaginary part of diagonal and off-diagonal components of third-order nonlinear susceptibilities.