期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向军事图像识别网络FDRCN设计及实现
被引量:
1
1
作者
唐曦煜
《国外电子测量技术》
2020年第12期119-124,共6页
随着军事目标的隐蔽性和机动性越来越好,导致检测识别难度加大,为了更加快速准确检测识别目标以防贻误战机,设计了一种新的深度网络识别方法(FDRCN)。首先通过将特征金字塔网络(FPN)和稠密性卷积神经网络(DenseNet)进行融合,构建特征金...
随着军事目标的隐蔽性和机动性越来越好,导致检测识别难度加大,为了更加快速准确检测识别目标以防贻误战机,设计了一种新的深度网络识别方法(FDRCN)。首先通过将特征金字塔网络(FPN)和稠密性卷积神经网络(DenseNet)进行融合,构建特征金字塔稠密网络(FPDN)对目标进行高质量的特征提取;再通过RPN网络进一步确定检测目标的特征位置信息并形成目标候选区域;最后借助FCN和DenseNet的跳跃连接形成FCDN网络,实现目标种类的预测和分类并给出预测概率。结果表明,FDRCN算法模型可以大大提升检测识别性能,Box-mAP达到45.1%,Mask-mAP达到41.1%。
展开更多
关键词
神经网络
目标识别分类
特征提取
实例分割
下载PDF
职称材料
题名
面向军事图像识别网络FDRCN设计及实现
被引量:
1
1
作者
唐曦煜
机构
西安工业大学
出处
《国外电子测量技术》
2020年第12期119-124,共6页
文摘
随着军事目标的隐蔽性和机动性越来越好,导致检测识别难度加大,为了更加快速准确检测识别目标以防贻误战机,设计了一种新的深度网络识别方法(FDRCN)。首先通过将特征金字塔网络(FPN)和稠密性卷积神经网络(DenseNet)进行融合,构建特征金字塔稠密网络(FPDN)对目标进行高质量的特征提取;再通过RPN网络进一步确定检测目标的特征位置信息并形成目标候选区域;最后借助FCN和DenseNet的跳跃连接形成FCDN网络,实现目标种类的预测和分类并给出预测概率。结果表明,FDRCN算法模型可以大大提升检测识别性能,Box-mAP达到45.1%,Mask-mAP达到41.1%。
关键词
神经网络
目标识别分类
特征提取
实例分割
Keywords
neural network
target recognition and classification
feature extraction
instance segmentation
分类号
TN2 [电子电信—物理电子学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向军事图像识别网络FDRCN设计及实现
唐曦煜
《国外电子测量技术》
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部