Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles we...Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.展开更多
基金the financial supports from the National Natural Science Foundation of China (Nos. 51974116, 51874128)the Science Foundation of Hunan Province, China (Nos. 2020JJ4273, 2020JJ5130)。
文摘Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.