-
题名基于深度强化学习下的股票量化交易算法设计
- 1
-
-
作者
孔荫莹
黄志花
邓浩东
唐毅康
-
机构
广东财经大学统计与数学学院
-
出处
《南昌大学学报(理科版)》
CAS
2024年第1期24-29,35,共7页
-
基金
广东省基础与应用基础研究基金(2022A1515012429)
广东省教育厅创新团队项目(2022WCXTD009)
广州市科技计划项目(202201020345)。
-
文摘
针对股票量化交易中有限数据预测未来价格趋势和智能资产组合配置等难题,采用DeepAR模型来预测股票价格的未来涨跌趋势,根据这些趋势计算涨跌幅精选了16支有潜力的股票,并运用SAC模型进行智能资产配置。结果表明,DeepAR模型的股票选择有助于SAC模型实现智能资产组合配置,而SAC模型的量化决策也取得了理想的效果。在4个月的时间内,实现了10.79%的收益率和32.37%的年化收益率。相较于上证指数和沪深300指数有显著的超额收益率,分别为12.47%和21.48%。此外,2016—2022年回测中达到了1.3%的夏普比率和29%的最大回撤率。
-
关键词
深度强化学习
量化交易
超额收益
股票预测
-
Keywords
deep reinforcement learning
quantitative trading
excess return
stock forecast
-
分类号
TP181
[自动化与计算机技术—控制理论与控制工程]
-