期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
二次聚类与神经网络结合的日光温室温度二步预测方法
被引量:
22
1
作者
陈昕
唐湘璐
+3 位作者
李想
刘天麒
贾璐
卢韬
《农业机械学报》
EI
CAS
CSCD
北大核心
2017年第S1期353-358,共6页
精确预测日光温室温度是实现对温室精准调控的前提。由于温室是复杂非线性系统,受室内外众多环境因素影响,且部分因素难以准确测量和建模,因此,难以通过机理分析建立室外因素精确影响室内温度的物理模型。而现有时间序列分析、人工神经...
精确预测日光温室温度是实现对温室精准调控的前提。由于温室是复杂非线性系统,受室内外众多环境因素影响,且部分因素难以准确测量和建模,因此,难以通过机理分析建立室外因素精确影响室内温度的物理模型。而现有时间序列分析、人工神经网络等仅基于数据的方法预测准确度也较低。本文提出连续时间段聚类与BP神经网络相结合的二步日光温室温度预测方法。首先,进行二次聚类,对室外温度情况相似的日进行聚类,并将全年划分为若干个类似时间段,根据连续时间段内相似日的数量进行聚类,将全年内的连续时间段归入若干类别。其次,对不同类别的时间段,分别采用BP神经网络建立室外温度、相对湿度、太阳辐射、风速和温室室内温度间的关联模型,通过数据训练,能够较为准确的根据室外环境数据预测室内温度。通过涿州实验农场2年数据试验验证,通过二次聚类,全年连续时间段可划分为3类,通过分别建立BP神经网络并分别训练,结果表明本方法预测误差仅为6.23%,与现有未分类的BP神经网络预测算法对比,本文方法有效地提高了准确度,平均误差降低5.4个百分点。
展开更多
关键词
温室
温度预测
二次聚类分析
BP神经网络
下载PDF
职称材料
题名
二次聚类与神经网络结合的日光温室温度二步预测方法
被引量:
22
1
作者
陈昕
唐湘璐
李想
刘天麒
贾璐
卢韬
机构
中国农业大学信息与电气工程学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2017年第S1期353-358,共6页
基金
国家自然科学基金项目(61601471)
北京市自然科学基金项目(4164090)
中央高校基本科研业务费专项资金项目(2017QC077)
文摘
精确预测日光温室温度是实现对温室精准调控的前提。由于温室是复杂非线性系统,受室内外众多环境因素影响,且部分因素难以准确测量和建模,因此,难以通过机理分析建立室外因素精确影响室内温度的物理模型。而现有时间序列分析、人工神经网络等仅基于数据的方法预测准确度也较低。本文提出连续时间段聚类与BP神经网络相结合的二步日光温室温度预测方法。首先,进行二次聚类,对室外温度情况相似的日进行聚类,并将全年划分为若干个类似时间段,根据连续时间段内相似日的数量进行聚类,将全年内的连续时间段归入若干类别。其次,对不同类别的时间段,分别采用BP神经网络建立室外温度、相对湿度、太阳辐射、风速和温室室内温度间的关联模型,通过数据训练,能够较为准确的根据室外环境数据预测室内温度。通过涿州实验农场2年数据试验验证,通过二次聚类,全年连续时间段可划分为3类,通过分别建立BP神经网络并分别训练,结果表明本方法预测误差仅为6.23%,与现有未分类的BP神经网络预测算法对比,本文方法有效地提高了准确度,平均误差降低5.4个百分点。
关键词
温室
温度预测
二次聚类分析
BP神经网络
Keywords
greenhouse
temperature prediction
twice clustering analysis
back propagation neural network
分类号
F2 [经济管理—国民经济]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
二次聚类与神经网络结合的日光温室温度二步预测方法
陈昕
唐湘璐
李想
刘天麒
贾璐
卢韬
《农业机械学报》
EI
CAS
CSCD
北大核心
2017
22
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部