期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO-V3网络的百香果实时检测
被引量:
18
1
作者
唐熔钗
伍锡如
《广西师范大学学报(自然科学版)》
CAS
北大核心
2020年第6期32-39,共8页
针对目前流行的目标检测模型对真实果园中百香果检测的抗干扰能力不理想问题,本文提出基于改进的YOLO-V3网络对真实果园中百香果进行实时检测。首先,剔除YOLO-V3模型的大物体预测尺度,将3尺度预测降为2尺度预测,用于加快物体的检测速度...
针对目前流行的目标检测模型对真实果园中百香果检测的抗干扰能力不理想问题,本文提出基于改进的YOLO-V3网络对真实果园中百香果进行实时检测。首先,剔除YOLO-V3模型的大物体预测尺度,将3尺度预测降为2尺度预测,用于加快物体的检测速度;其次,在中型物体预测尺度后添加DenseNet网络,用于增强网络特征传播,提高模型的检测精度;最后,利用改进的YOLO-V3网络对百香果数据集进行多次训练,得到最优预训练模型。实验结果表明:改进的YOLO-V3网络实时检测效果好,对目标的平均检测精度高达97.5%以上,并且检测速度达到38幅/s,为实时检测百香果提供了有效方法。
展开更多
关键词
深度学习
改进的YOLO-V3
实时检测
DenseNet网络
百香果
下载PDF
职称材料
题名
基于改进YOLO-V3网络的百香果实时检测
被引量:
18
1
作者
唐熔钗
伍锡如
机构
桂林电子科技大学电子工程与自动化学院
广西高校非线性电路与光通信重点实验室(广西师范大学)
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2020年第6期32-39,共8页
基金
国家自然科学基金(61863007,61603107)
桂林电子科技大学研究生教育创新计划(2019YCXS095)。
文摘
针对目前流行的目标检测模型对真实果园中百香果检测的抗干扰能力不理想问题,本文提出基于改进的YOLO-V3网络对真实果园中百香果进行实时检测。首先,剔除YOLO-V3模型的大物体预测尺度,将3尺度预测降为2尺度预测,用于加快物体的检测速度;其次,在中型物体预测尺度后添加DenseNet网络,用于增强网络特征传播,提高模型的检测精度;最后,利用改进的YOLO-V3网络对百香果数据集进行多次训练,得到最优预训练模型。实验结果表明:改进的YOLO-V3网络实时检测效果好,对目标的平均检测精度高达97.5%以上,并且检测速度达到38幅/s,为实时检测百香果提供了有效方法。
关键词
深度学习
改进的YOLO-V3
实时检测
DenseNet网络
百香果
Keywords
deep learning
improved YOLO-V3 network
real-time detection
DenseNet network
passion fruit
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO-V3网络的百香果实时检测
唐熔钗
伍锡如
《广西师范大学学报(自然科学版)》
CAS
北大核心
2020
18
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部