期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于TD-Mask R-CNN的机械装配体图像实例分割 被引量:1
1
作者 唐若仪 陈成军 +1 位作者 王金磊 代成刚 《组合机床与自动化加工技术》 北大核心 2024年第4期135-140,共6页
在机械产品装配过程中,为了准确识别机械装配体零件信息以减少零件漏装、错装等现象,提出一种改进的机械装配体图像实例分割方法TD-Mask R-CNN。首先,在主干网络ResNet101中引入可变形卷积(deformable convolutional networks, DCN)以... 在机械产品装配过程中,为了准确识别机械装配体零件信息以减少零件漏装、错装等现象,提出一种改进的机械装配体图像实例分割方法TD-Mask R-CNN。首先,在主干网络ResNet101中引入可变形卷积(deformable convolutional networks, DCN)以增加网络模型的泛化能力;其次,使用Transfiner结构作为掩码分支以提高机械零件边缘的分割精度;最后,在Transfiner结构中引入离散余弦变换(discrete cosine transform, DCT)模块以提升模型对机械装配体图像整体的分割能力。实验结果表明,提出的实例分割方法在合成深度图像数据集和真实彩色图像数据集上得到的掩码平均精度(average precision, AP)分别为87.7%和92.0%,与其他主流实例分割算法相比均有所提升。 展开更多
关键词 深度学习 装配监测 实例分割 TD-Mask R-CNN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部