期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于图自编码-生成对抗网络的路网数据修复 被引量:3
1
作者 徐东伟 彭航 +2 位作者 商学天 魏臣臣 杨艳芳 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第6期33-41,共9页
完整的交通路网数据是实现智能交通系统的前提,故本文提出一种基于图自编码-生成对抗网络的方法对路网中缺失数据进行修复。首先,通过降噪图变分自编码器提取路网缺失数据的时空特征,使其能最大程度捕获原始路网信息;其次,基于该时空特... 完整的交通路网数据是实现智能交通系统的前提,故本文提出一种基于图自编码-生成对抗网络的方法对路网中缺失数据进行修复。首先,通过降噪图变分自编码器提取路网缺失数据的时空特征,使其能最大程度捕获原始路网信息;其次,基于该时空特征利用生成对抗网络生成路网数据,加入重建损失并优化生成对抗网络的目标函数,实现对缺失数据的有效插补;最后,采用西雅图(Seattle)和加州(PEMS04)路网速度数据集,针对不同缺失类型和缺失率下的数据修复进行对比实验。当随机缺失率在10%~70%时,Seattle数据集的MAE指标在2.38~3.25之间,PEMS04数据集的MAE指标在1.46~2.38之间;当聚集缺失率在10%~70%时,Seattle数据集的MAE指标在2.51~2.82之间,PEMS04数据集的MAE指标在1.52~1.54之间。对比结果表明,本文提出的路网数据修复方法均优于BP、DSAE、BGCP等模型。 展开更多
关键词 智能交通 数据修复 图自编码器 生成对抗网络 时空特征 深度学习
下载PDF
基于图网络融合的交通状态预测方法研究
2
作者 徐东伟 商学天 +1 位作者 魏臣臣 彭航 《武汉理工大学学报(交通科学与工程版)》 2022年第2期195-200,共6页
文中考虑道路节点之间的时间相关性,利用皮尔逊相关性系数构建逻辑相关路网;通过图聚合算法聚合道路节点邻居信息,融合原始交通路网与逻辑相关路网提取的时空特征信息,以最小化损失函数为目标,返回最优模型参数,构建基于图网络融合的交... 文中考虑道路节点之间的时间相关性,利用皮尔逊相关性系数构建逻辑相关路网;通过图聚合算法聚合道路节点邻居信息,融合原始交通路网与逻辑相关路网提取的时空特征信息,以最小化损失函数为目标,返回最优模型参数,构建基于图网络融合的交通路网模型.采用西雅图高速路网速度数据集(seattle)和加州流量数据集(PEMS08)作试验验证,图网络融合模型提高了在交通状态预测精度.在短时交通状态预测中,Seattle的MAE指标为2.57、MAPE指标为6.48;PEMS08的MAE指标为14.23、MAPE指标为7.15;长时交通状态预测结果均优于LSTM、T-GCN等模型. 展开更多
关键词 智能交通 交通流预测 图网络 路网交通状态数据 特征融合 相关性网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部