期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ConvLSTM-GRU的公交客流量预测模型
被引量:
2
1
作者
连莲
商家硕
+1 位作者
宗学军
王国刚
《控制工程》
CSCD
北大核心
2023年第6期1090-1098,共9页
公共交通在城市智能交通系统中发挥着重要的作用,准确的公交客流量预测对智能交通的发展至关重要。为了提高公交客流量预测的准确度,提出一种基于卷积长短期记忆(convolutionallongshort-termmemory,ConvLSTM)网络和门控循环单元(gatere...
公共交通在城市智能交通系统中发挥着重要的作用,准确的公交客流量预测对智能交通的发展至关重要。为了提高公交客流量预测的准确度,提出一种基于卷积长短期记忆(convolutionallongshort-termmemory,ConvLSTM)网络和门控循环单元(gaterecurrent unit,GRU)算法的预测模型Conv LSTM-GRU,结合公交车客流量、天气特征和气温特征以及节假日特征来预测未来的公交客流量。通过提取不同时段公交客流量之间的相关性并采用编码器-解码器结构来减少递归多步预测中的累积误差,提高了预测精度。最后,将ConvLSTM-GRU模型与反向传播(back propagation,BP)神经网络、长短期神经网络、门控循环单元结构、卷积长短期神经网络和自回归网络5种算法进行比较,结果表明所提模型在预测准确度方面均优于对比算法。
展开更多
关键词
ConvLSTM
GRU
公交客流量预测
编码器-解码器
下载PDF
职称材料
基于Bi-LSTM-Attention的公交车头时距预测模型
2
作者
连莲
商家硕
宗学军
《沈阳化工大学学报》
CAS
2022年第2期160-166,共7页
公交车头时距预测作为公交车调度决策系统的重要依据,可以帮助公交公司及时发现交通拥堵,做出合理的调度决策.然而,现有的研究仅限于传统的预测方法,缺乏综合多种影响因素预测车头时距波动.为解决这个问题,本研究采用一种基于公交智能...
公交车头时距预测作为公交车调度决策系统的重要依据,可以帮助公交公司及时发现交通拥堵,做出合理的调度决策.然而,现有的研究仅限于传统的预测方法,缺乏综合多种影响因素预测车头时距波动.为解决这个问题,本研究采用一种基于公交智能卡数据的双向长短时神经网络-注意力机制(Bi-LSTM-Attention)预测框架.该模型将注意力机制融入双向长短时记忆网络中,利用历史公交车头时距、公交运行时间、停靠时间预测每个站点的公交车头时距波动.通过某市两条公交线路实例对该模型进行验证.实验结果表明:与已有算法相比,Bi-LSTM-Attention在单步和多步预测中均表现出更高的准确度,可以为公交动态调度提供理论支持.
展开更多
关键词
预测控制
Bi-LSTM
注意力机制
公交车头时距
下载PDF
职称材料
题名
基于ConvLSTM-GRU的公交客流量预测模型
被引量:
2
1
作者
连莲
商家硕
宗学军
王国刚
机构
沈阳化工大学信息工程学院
出处
《控制工程》
CSCD
北大核心
2023年第6期1090-1098,共9页
基金
国家重点研发计划重点专项(2018YFB1700200)。
文摘
公共交通在城市智能交通系统中发挥着重要的作用,准确的公交客流量预测对智能交通的发展至关重要。为了提高公交客流量预测的准确度,提出一种基于卷积长短期记忆(convolutionallongshort-termmemory,ConvLSTM)网络和门控循环单元(gaterecurrent unit,GRU)算法的预测模型Conv LSTM-GRU,结合公交车客流量、天气特征和气温特征以及节假日特征来预测未来的公交客流量。通过提取不同时段公交客流量之间的相关性并采用编码器-解码器结构来减少递归多步预测中的累积误差,提高了预测精度。最后,将ConvLSTM-GRU模型与反向传播(back propagation,BP)神经网络、长短期神经网络、门控循环单元结构、卷积长短期神经网络和自回归网络5种算法进行比较,结果表明所提模型在预测准确度方面均优于对比算法。
关键词
ConvLSTM
GRU
公交客流量预测
编码器-解码器
Keywords
ConvLSTM
GRU
bus passenger flow prediction
encoder-decoder
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
U491.17 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
基于Bi-LSTM-Attention的公交车头时距预测模型
2
作者
连莲
商家硕
宗学军
机构
沈阳化工大学信息工程学院
出处
《沈阳化工大学学报》
CAS
2022年第2期160-166,共7页
基金
辽宁省博士启动基金(20180540050)。
文摘
公交车头时距预测作为公交车调度决策系统的重要依据,可以帮助公交公司及时发现交通拥堵,做出合理的调度决策.然而,现有的研究仅限于传统的预测方法,缺乏综合多种影响因素预测车头时距波动.为解决这个问题,本研究采用一种基于公交智能卡数据的双向长短时神经网络-注意力机制(Bi-LSTM-Attention)预测框架.该模型将注意力机制融入双向长短时记忆网络中,利用历史公交车头时距、公交运行时间、停靠时间预测每个站点的公交车头时距波动.通过某市两条公交线路实例对该模型进行验证.实验结果表明:与已有算法相比,Bi-LSTM-Attention在单步和多步预测中均表现出更高的准确度,可以为公交动态调度提供理论支持.
关键词
预测控制
Bi-LSTM
注意力机制
公交车头时距
Keywords
predictive control
Bi-LSTM
attention mechanism
bus headway
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ConvLSTM-GRU的公交客流量预测模型
连莲
商家硕
宗学军
王国刚
《控制工程》
CSCD
北大核心
2023
2
下载PDF
职称材料
2
基于Bi-LSTM-Attention的公交车头时距预测模型
连莲
商家硕
宗学军
《沈阳化工大学学报》
CAS
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部