期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Mask-RCNN与SFM的单目视觉长方体三维测量方法 被引量:1
1
作者 宋乐 侯宇鹏 +3 位作者 张俊鹏 吴桐 齐昊鸣 商恩浩 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2023年第2期127-136,共10页
为解决基于运动结构恢复(Structure from motion,SFM)多视角拍摄的局限性,以实现自动化三维测量效果,本文提出了一种可用于长方体三维测量的基于Mask-区域卷积神经网络(Mask-region convolutional neural networks,Mask-RCNN)和SFM的单... 为解决基于运动结构恢复(Structure from motion,SFM)多视角拍摄的局限性,以实现自动化三维测量效果,本文提出了一种可用于长方体三维测量的基于Mask-区域卷积神经网络(Mask-region convolutional neural networks,Mask-RCNN)和SFM的单目视觉测量方法。以箱体三维测量为例,该方法包括测量点提取、转换矩阵计算和三维映射测量三个部分,仅需一次标定获取内部参数,利用深度学习技术实现了单视角自动化三维测量,避免复杂重建的同时降低了视觉测量方法的应用要求。实验结果表明,该方法在棋盘格标志物下获得测量结果的相对标准不确定度在6%以内,在箱体自带标志物下获得测量结果的相对标准不确定度在8%以内。 展开更多
关键词 深度学习 Mask-区域卷积神经网络 单目视觉 运动结构恢复 三维测量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部