Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS ...Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic et^ciency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.展开更多
The selection rule for angle-resolved polarized Raman(ARPR)intensity of phonons from standard grouptheoretical method in isotropic materials would break down in anisotropic layered materials(ALMs)due to birefringence ...The selection rule for angle-resolved polarized Raman(ARPR)intensity of phonons from standard grouptheoretical method in isotropic materials would break down in anisotropic layered materials(ALMs)due to birefringence and linear dichroism effects.The two effects result in depth-dependent polarization and intensity of incident laser and scattered signal inside ALMs and thus make a challenge to predict ARPR intensity at any laser incidence direction.Herein,taking in-plane anisotropic black phosphorus as a prototype,we developed a so-called birefringence-linear-dichroism(BLD)model to quantitatively understand its ARPR intensity at both normal and oblique laser incidences by the same set of real Raman tensors for certain laser excitation.No fitting parameter is needed,once the birefringence and linear dichroism effects are considered with the complex refractive indexes.An approach was proposed to experimentally determine real Raman tensor and complex refractive indexes,respectively,from the relative Raman intensity along its principle axes and incident-angle resolved reflectivity by Fresnel’s law.The results suggest that the previously reported ARPR intensity of ultrathin ALM flakes deposited on a multilayered substrate at normal laser incidence can be also understood based on the BLD model by considering the depth-dependent polarization and intensity of incident laser and scattered Raman signal induced by both birefringence and linear dichroism effects within ALM flakes and the interference effects in the multilayered structures,which are dependent on the excitation wavelength,thickness of ALM flakes and dielectric layers of the substrate.This work can be generally applicable to any opaque anisotropic crystals,offering a promising route to predict and manipulate the polarized behaviors of related phonons.展开更多
基金Supported by the National Program on Key Science Research of China under Grant No 2011CB922201, and the National Natural Science Foundation of China under Grant Nos 11174229, 11204221, 11374236 and 11204112.
文摘Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic et^ciency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.
基金the support from the National Key Research and Development Program of China(2016YFA0301204)the National Natural Science Foundation of China(11874350 and 51702352)+2 种基金the CAS Key Research Program of Frontier Sciences(ZDBS-LY-SLH004)China Postdoctoral Science Foundation(2019TQ0317)support from Youth Innovation Promotion Association Chinese Academy of Sciences(2020354)。
文摘The selection rule for angle-resolved polarized Raman(ARPR)intensity of phonons from standard grouptheoretical method in isotropic materials would break down in anisotropic layered materials(ALMs)due to birefringence and linear dichroism effects.The two effects result in depth-dependent polarization and intensity of incident laser and scattered signal inside ALMs and thus make a challenge to predict ARPR intensity at any laser incidence direction.Herein,taking in-plane anisotropic black phosphorus as a prototype,we developed a so-called birefringence-linear-dichroism(BLD)model to quantitatively understand its ARPR intensity at both normal and oblique laser incidences by the same set of real Raman tensors for certain laser excitation.No fitting parameter is needed,once the birefringence and linear dichroism effects are considered with the complex refractive indexes.An approach was proposed to experimentally determine real Raman tensor and complex refractive indexes,respectively,from the relative Raman intensity along its principle axes and incident-angle resolved reflectivity by Fresnel’s law.The results suggest that the previously reported ARPR intensity of ultrathin ALM flakes deposited on a multilayered substrate at normal laser incidence can be also understood based on the BLD model by considering the depth-dependent polarization and intensity of incident laser and scattered Raman signal induced by both birefringence and linear dichroism effects within ALM flakes and the interference effects in the multilayered structures,which are dependent on the excitation wavelength,thickness of ALM flakes and dielectric layers of the substrate.This work can be generally applicable to any opaque anisotropic crystals,offering a promising route to predict and manipulate the polarized behaviors of related phonons.