Demonstrative experiments on the variation patterns of the position, angle, and intensity of shock wave are presented. Different means of aerodynamic actuation, such as variations of the distance between discharge cha...Demonstrative experiments on the variation patterns of the position, angle, and intensity of shock wave are presented. Different means of aerodynamic actuation, such as variations of the distance between discharge channels, the number of discharge channels, the DC discharge voltage, the angle of ramp, and the application of magnetic field, in a supersonic flow of M = 2.2 are employed. Results of both the schlieren and pressure test indicated that when the plasma aerodynamic actuation is applied, the starting point of the shock wave was shifted 1 mm to 8 mm upstream on average, the shock wave angle was reduced 470 to 8% on average, and the shock wave intensity was decreased by 8% to 26%. The local plasma aerodynamic actuation could generate an extrusive plasma layer with high temperature and pressure. This plasma layer caused an upstream-shift of the separating point of the boundary layer. which changed the structure of the original shock wave. Moreover, in a simulation study, the plasma aerodynamic actuation was simplified as a thermal source term added to the Navier-Stokes equations, after all, the results obtained showed consistency with the experimental results.展开更多
For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation i...For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.展开更多
基金supported by National Natural Science Foundation of China (No.50776100)
文摘Demonstrative experiments on the variation patterns of the position, angle, and intensity of shock wave are presented. Different means of aerodynamic actuation, such as variations of the distance between discharge channels, the number of discharge channels, the DC discharge voltage, the angle of ramp, and the application of magnetic field, in a supersonic flow of M = 2.2 are employed. Results of both the schlieren and pressure test indicated that when the plasma aerodynamic actuation is applied, the starting point of the shock wave was shifted 1 mm to 8 mm upstream on average, the shock wave angle was reduced 470 to 8% on average, and the shock wave intensity was decreased by 8% to 26%. The local plasma aerodynamic actuation could generate an extrusive plasma layer with high temperature and pressure. This plasma layer caused an upstream-shift of the separating point of the boundary layer. which changed the structure of the original shock wave. Moreover, in a simulation study, the plasma aerodynamic actuation was simplified as a thermal source term added to the Navier-Stokes equations, after all, the results obtained showed consistency with the experimental results.
基金supported by National Natural Science Foundation of China(Nos.51276197,51207169)
文摘For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.