期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于近似U型网络结构的图像去噪模型 被引量:3
1
作者 靳华中 张修洋 +2 位作者 叶志伟 张闻其 夏小鱼 《计算机应用》 CSCD 北大核心 2022年第8期2571-2577,共7页
针对图像去噪中的去噪效果差、训练周期长的问题,提出一种基于近似U型网络结构的图像去噪模型。首先,使用不同步长的卷积层将原有的线性网络结构修改为近似U型的网络结构;然后,将不同感受野的图像信息叠加以尽可能地保留图像的原有信息... 针对图像去噪中的去噪效果差、训练周期长的问题,提出一种基于近似U型网络结构的图像去噪模型。首先,使用不同步长的卷积层将原有的线性网络结构修改为近似U型的网络结构;然后,将不同感受野的图像信息叠加以尽可能地保留图像的原有信息;最后,引入反卷积网络层进行图像恢复和噪声的进一步去除。在Set12与BSD68测试集上与去噪卷积神经网络(DnCNN)模型相比,所提模型的峰值信噪比(PSNR)平均提升了0.04~0.14dB,训练时长平均缩短了41%。实验结果表明,所提模型具有更好地去噪效果和更短的训练时长。 展开更多
关键词 图像去噪 去噪卷积神经网络 反卷积 U-Net 残差学习
下载PDF
结合辐射传输模拟与浅层神经网络的FY-3D MERSI影像云识别
2
作者 金适宽 马盈盈 +2 位作者 龚威 叶志伟 夏小鱼 《遥感学报》 EI CSCD 北大核心 2022年第11期2136-2146,共11页
本文结合辐射传输模型和机器学习提出了一种从FY-3D卫星MERSIⅡ传感器光学影像中识别云像元的方法CRMC(Combine Reflectance simulation and Machine learning for Cloud detection)。该方法通过设置变化的地物和大气内在光学特性IOPs(I... 本文结合辐射传输模型和机器学习提出了一种从FY-3D卫星MERSIⅡ传感器光学影像中识别云像元的方法CRMC(Combine Reflectance simulation and Machine learning for Cloud detection)。该方法通过设置变化的地物和大气内在光学特性IOPs(Inherent Optical Properties),达到考虑多种下垫面的二项反射特征和不同大气条件下气溶胶和云参数的目的。CRMC方法主要包含3个步骤:(1)通过聚类分析从MODIS二项反射参数产品中分离出11种典型下垫面地表反射参数;(2)将随机设置的气溶胶和云参数以及地表反射率参数(即IOPs)输入SBDART辐射传输模型,得到模拟的反射率值数据集,并以此训练浅层神经网络模型;(3)利用浅层神经网络模型逐像元预测云概率,并根据实际需要确定区分云像元和非云像元的云概率阈值。通过与CALIPSO垂直特性掩膜产品(VFM)逐像元对比验证发现,CRMC方法总正确率为79.6%,且在陆地和海面上分别为78.5%和81.2%。通过与MODIS云掩膜产品横向对比(MYD35)发现,当云阈值设定为0.2时,CRMC方法在陆地,主要是阔叶林、农田、城市和裸土等地表上的云识别效果较好,但在海面的云识别效果仍待进一步提高。 展开更多
关键词 云检测 辐射传输模拟 神经网络 FY-3D MERSIⅡ
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部