期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于搜寻者优化算法的K-means聚类算法 被引量:6
1
作者 王盛慧 夏永丰 《燕山大学学报》 CAS 北大核心 2018年第5期422-426,433,共6页
针对K-means聚类算法易陷入局部最优的问题,提出一种改进的K-means算法,将搜寻者优化算法(SOA)和K-means聚类算法结合起来,利用SOA鲁棒性好、全局搜索能力强的特点,通过确定搜寻者的搜索方向和搜索步长,更新搜寻者的位置,进行全局寻优,... 针对K-means聚类算法易陷入局部最优的问题,提出一种改进的K-means算法,将搜寻者优化算法(SOA)和K-means聚类算法结合起来,利用SOA鲁棒性好、全局搜索能力强的特点,通过确定搜寻者的搜索方向和搜索步长,更新搜寻者的位置,进行全局寻优,提高K-means聚类算法的聚类精确度。在仿真实验过程中,首先,选取具有代表性的处于三种燃烧状态的水泥回转窑窑内视频图像为研究对象,分别采用K-means算法和改进后的算法进行仿真实验,实验结果表明,改进算法所获得的图像聚类效果更加精确;然后,分别用上述两种算法对数据集Iris和Wine进行相关测试,结果表明,改进算法的聚类精确度和运行效率都得到了有效提高。 展开更多
关键词 K-MEANS聚类算法 搜寻者优化算法 全局寻优 聚类精确度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部