针对雾气条件下成像设备采集图像退化严重的问题,提出一种雾气图像的去雾算法。通过对雾气天气成像物理模型的简化,找到图像复原函数中的透射率和大气光值2个关键未知量;分析影响透射率的因素,通过对大量雾气图像进行灰度分布概率统计,...针对雾气条件下成像设备采集图像退化严重的问题,提出一种雾气图像的去雾算法。通过对雾气天气成像物理模型的简化,找到图像复原函数中的透射率和大气光值2个关键未知量;分析影响透射率的因素,通过对大量雾气图像进行灰度分布概率统计,提出一种透射率快速估计算法;通过引导滤波估计大气光值,利用简化的修复函数完成对雾气图像的去雾处理。与HE算法(HE Kaiming,SUN Jian,TANG Xiaoou.Single image haze removal using dark channel prior.IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2011,33:2341)相比较,经本算法去雾复原后的图像信息熵值最少可提高0.060 4比特/像素、平均梯度值最少可提高0.009 55。实验结果表明,经本算法复原的有雾图像清晰度较高,细节复原较好,去雾效果明显。展开更多
文摘针对雾气条件下成像设备采集图像退化严重的问题,提出一种雾气图像的去雾算法。通过对雾气天气成像物理模型的简化,找到图像复原函数中的透射率和大气光值2个关键未知量;分析影响透射率的因素,通过对大量雾气图像进行灰度分布概率统计,提出一种透射率快速估计算法;通过引导滤波估计大气光值,利用简化的修复函数完成对雾气图像的去雾处理。与HE算法(HE Kaiming,SUN Jian,TANG Xiaoou.Single image haze removal using dark channel prior.IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI),2011,33:2341)相比较,经本算法去雾复原后的图像信息熵值最少可提高0.060 4比特/像素、平均梯度值最少可提高0.009 55。实验结果表明,经本算法复原的有雾图像清晰度较高,细节复原较好,去雾效果明显。