[目的/意义]挂果量是果树栽培管理的重要指标。传统人力抽样估测果树挂果量的方法不仅耗时费力,而且容易产生较大误差。本研究提出一种用于边缘计算设备的轻量化模型,实现视频中树上柑橘挂果量的自动估测。[方法]该模型采用CSPDarkNet53...[目的/意义]挂果量是果树栽培管理的重要指标。传统人力抽样估测果树挂果量的方法不仅耗时费力,而且容易产生较大误差。本研究提出一种用于边缘计算设备的轻量化模型,实现视频中树上柑橘挂果量的自动估测。[方法]该模型采用CSPDarkNet53+PAFPN结构作为特征提取网络,实现更快的推理速度和更低的模型复杂度,在果实跟踪过程中引入Byte算法改进FairMOT的数据关联策略,对视频中的柑橘进行预测跟踪,以提升挂果量估测准确性。[结果和讨论]在边缘计算设备NVIDIA Jetson AGX上进行模型性能测试结果表明,本研究所建模型对柑橘挂果量的平均估测精度(Average Estimating Precision,AEP)和处理速度(Frames Per Second,FPS)分别达到91.61%和14.76,模型估测值与人工测得真实值的决定系数R^(2)为0.9858,均方根误差(Root Mean Square Error,RMSE)为4.1713,模型参数量、计算量(Floating Point Operations,FLOPs)和模型大小分别为5.01 M、36.44 G和70.20 MB,展现出较对比模型更优的挂果量估测性能和更低的模型复杂度。[结论]试验结果证明了本研究所建模型在边缘计算设备上对柑橘挂果量估测的有效性,基于算法模型研发的果园挂果量远程监测系统可满足用于果园移动平台行进状态下的果树挂果量估测需求。本研究可为果园生产力自动监测分析提供技术支持。展开更多
文摘[目的/意义]挂果量是果树栽培管理的重要指标。传统人力抽样估测果树挂果量的方法不仅耗时费力,而且容易产生较大误差。本研究提出一种用于边缘计算设备的轻量化模型,实现视频中树上柑橘挂果量的自动估测。[方法]该模型采用CSPDarkNet53+PAFPN结构作为特征提取网络,实现更快的推理速度和更低的模型复杂度,在果实跟踪过程中引入Byte算法改进FairMOT的数据关联策略,对视频中的柑橘进行预测跟踪,以提升挂果量估测准确性。[结果和讨论]在边缘计算设备NVIDIA Jetson AGX上进行模型性能测试结果表明,本研究所建模型对柑橘挂果量的平均估测精度(Average Estimating Precision,AEP)和处理速度(Frames Per Second,FPS)分别达到91.61%和14.76,模型估测值与人工测得真实值的决定系数R^(2)为0.9858,均方根误差(Root Mean Square Error,RMSE)为4.1713,模型参数量、计算量(Floating Point Operations,FLOPs)和模型大小分别为5.01 M、36.44 G和70.20 MB,展现出较对比模型更优的挂果量估测性能和更低的模型复杂度。[结论]试验结果证明了本研究所建模型在边缘计算设备上对柑橘挂果量估测的有效性,基于算法模型研发的果园挂果量远程监测系统可满足用于果园移动平台行进状态下的果树挂果量估测需求。本研究可为果园生产力自动监测分析提供技术支持。