期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于类信息的TF-IDF权重分析与改进
被引量:
7
1
作者
姚严志
李建良
《计算机系统应用》
2021年第9期237-241,共5页
经典的TF-IDF算法仅考虑了特征词频率和逆文档频率等,忽略了特征词的类间、类内分布信息.本文通过TF-IDF算法计算特征词在不同规模语料库中的权重,分析特征词的类信息对权重的影响,并进一步针对该影响提出一种新的衡量特征词的类间、类...
经典的TF-IDF算法仅考虑了特征词频率和逆文档频率等,忽略了特征词的类间、类内分布信息.本文通过TF-IDF算法计算特征词在不同规模语料库中的权重,分析特征词的类信息对权重的影响,并进一步针对该影响提出一种新的衡量特征词的类间、类内分布信息的方法.本文通过增加两个新的权值,类间离散因子和类内离散因子,将其与经典的TF-IDF算法结合,提出了基于类信息的改进的TF-IDF-CI算法.本文通过朴素贝叶斯模型对改进后的算法的分类性能进行了验证.实验证明,改进后的权重算法在测试数据集上的表现,在准确率、召回率和F1值上均优于经典的TF-IDF算法.
展开更多
关键词
TF-IDF算法
类信息
权重分析
文本分类
下载PDF
职称材料
题名
基于类信息的TF-IDF权重分析与改进
被引量:
7
1
作者
姚严志
李建良
机构
南京理工大学理学院
出处
《计算机系统应用》
2021年第9期237-241,共5页
文摘
经典的TF-IDF算法仅考虑了特征词频率和逆文档频率等,忽略了特征词的类间、类内分布信息.本文通过TF-IDF算法计算特征词在不同规模语料库中的权重,分析特征词的类信息对权重的影响,并进一步针对该影响提出一种新的衡量特征词的类间、类内分布信息的方法.本文通过增加两个新的权值,类间离散因子和类内离散因子,将其与经典的TF-IDF算法结合,提出了基于类信息的改进的TF-IDF-CI算法.本文通过朴素贝叶斯模型对改进后的算法的分类性能进行了验证.实验证明,改进后的权重算法在测试数据集上的表现,在准确率、召回率和F1值上均优于经典的TF-IDF算法.
关键词
TF-IDF算法
类信息
权重分析
文本分类
Keywords
TF-IDF algorithm
feature weight
weight analysis
text classification
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于类信息的TF-IDF权重分析与改进
姚严志
李建良
《计算机系统应用》
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部