针对当前视觉同步定位与地图构建(visual simultaneous localization and mapping,VSLAM)算法鲁棒性较差,无法生成适合自主导航的语义地图等问题,提出一种基于实例分割的视觉SLAM算法。在对输入图像提取特征点的同时,使用卷积神经网络...针对当前视觉同步定位与地图构建(visual simultaneous localization and mapping,VSLAM)算法鲁棒性较差,无法生成适合自主导航的语义地图等问题,提出一种基于实例分割的视觉SLAM算法。在对输入图像提取特征点的同时,使用卷积神经网络对图像进行实例分割;利用实例分割信息辅助定位,剔除容易造成误匹配的特征点,缩小特征匹配的区域;使用实例分割的语义信息构建语义地图。使用TUM数据集对图像实例分割、视觉定位以及语义地图构建进行实验验证,验证结果表明,该算法提高了机器人定位的准确性,生成了精确的语义地图,满足机器人执行高级任务的需求。展开更多
文摘针对当前视觉同步定位与地图构建(visual simultaneous localization and mapping,VSLAM)算法鲁棒性较差,无法生成适合自主导航的语义地图等问题,提出一种基于实例分割的视觉SLAM算法。在对输入图像提取特征点的同时,使用卷积神经网络对图像进行实例分割;利用实例分割信息辅助定位,剔除容易造成误匹配的特征点,缩小特征匹配的区域;使用实例分割的语义信息构建语义地图。使用TUM数据集对图像实例分割、视觉定位以及语义地图构建进行实验验证,验证结果表明,该算法提高了机器人定位的准确性,生成了精确的语义地图,满足机器人执行高级任务的需求。