期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
沉积河谷-建筑群地震动力相互作用的二维IBEM模拟 被引量:5
1
作者 刘中宪 齐欣 +2 位作者 王冬 柴寿喜 姚殊 《岩土力学》 EI CAS CSCD 北大核心 2018年第10期3803-3811,共9页
众多城市坐落于沉积河谷之中,沉积河谷-密集建筑群间的地震动力相互作用规律尚不明确。采用间接边界元方法(IBEM),对在平面SV波入射下,沉积河谷-建筑群之间的地震相互作用进行二维模拟计算和参数分析。研究结果表明:沉积河谷-建筑群间... 众多城市坐落于沉积河谷之中,沉积河谷-密集建筑群间的地震动力相互作用规律尚不明确。采用间接边界元方法(IBEM),对在平面SV波入射下,沉积河谷-建筑群之间的地震相互作用进行二维模拟计算和参数分析。研究结果表明:沉积河谷-建筑群间存在着显著而复杂的地震动力相互作用;较浅沉积河谷中建筑群地震响应呈现强弱交替变换特征;入射波角度、沉积河谷的材料、几何特征是影响沉积河谷-建筑群整体地震响应规律的关键因素。总体上看,建筑群对浅沉积河谷地震动响应有较大的降幅效应,特别是高频波入射下最大降幅近50%。实际河谷地震放大效应评估需考虑密集建筑群的影响,而位于地震波聚焦位置的建筑物需适当提高设防标准。 展开更多
关键词 城市-场地效应 沉积河谷 建筑群 地震波 间接边界元(IBEM)
下载PDF
The Learning Convergence of CMAC in Cyclic Learning 被引量:1
2
作者 姚殊 张钹 《Journal of Computer Science & Technology》 SCIE EI CSCD 1994年第4期320-328,共9页
In this paper we discuss the learning convergence of the cerebellar model articulation controller (CMAC) in cyclic learning. We prove the following results. First, if the training samples are noiseless, the training a... In this paper we discuss the learning convergence of the cerebellar model articulation controller (CMAC) in cyclic learning. We prove the following results. First, if the training samples are noiseless, the training algorithm converges if and only if the learning rate is chosen from (0, 2). Second, when the training samples have noises, the learning algorithm will converge with a probability of one if the learning rate is dynandcally decreased. Third, in the case with noises, with a small but fixed learning rate ε.the mean square error of the weight sequences generated by the CMAC learning algorithm will be bounded by O(ε). Some simulation experlinents are carried out totest these results. 展开更多
关键词 Neural network learning convergence CMAC cyclic learning probability
原文传递
Situated Learning of a Behavior-Based Mobile Robot Path Planner
3
作者 姚殊 张钹 《Journal of Computer Science & Technology》 SCIE EI CSCD 1995年第4期375-379,共5页
In this paper, we propose a behaviorbased path planner that can self learn in anunknown environment. A situated learning algorithm is designed which allows therobot to learn to coordinate several concurrent behaviors ... In this paper, we propose a behaviorbased path planner that can self learn in anunknown environment. A situated learning algorithm is designed which allows therobot to learn to coordinate several concurrent behaviors and improve its performanceby interacting with the environmellt. Behaviors are implemented using CMAC neuralnetworks. A simulation environment is set up and some simulation experiments arecarried out to rest our learning algorithm. 展开更多
关键词 Situated learning behavior-based path planning CMAC neural networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部