期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度残差注意力域适应的轴承故障诊断
1
作者 唐友福 姜佩辰 +2 位作者 李澳 丁涵 刘瑞峰 《石油机械》 北大核心 2024年第10期20-27,共8页
针对滚动轴承待监测样本在跨机器任务中诊断困难的问题,提出一种基于多尺度残差注意力域适应的滚动轴承故障诊断方法。该方法将滚动轴承振动信号直接作为多尺度注意力残差网络模块的输入,为更好提取源域与目标域的共同特征,该模块引入... 针对滚动轴承待监测样本在跨机器任务中诊断困难的问题,提出一种基于多尺度残差注意力域适应的滚动轴承故障诊断方法。该方法将滚动轴承振动信号直接作为多尺度注意力残差网络模块的输入,为更好提取源域与目标域的共同特征,该模块引入多尺度卷积提取特征信息、注意力机制的压缩激励网络解决数据差异性与残差网络的跨层连接,域自适应部分采用局部最大均值差异度量准则,并选择滚动轴承公开故障数据集进行对比与消融试验。试验结果表明:提出的多尺度残差注意力域适应的滚动轴承故障诊断方法在跨机器任务下平均识别精度达到99.1%,相比于其他方法具有较好的泛化性能。所得结论可为滚动轴承故障监测与诊断提供理论依据。 展开更多
关键词 滚动轴承 故障诊断模型 迁移学习 多尺度卷积核 注意力残差块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部