为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息...为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。展开更多
文摘为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。