电力负荷预测直接影响电网规划和运行,但是受到各类因素的影响。为提高预测精度,针对电力负数据时序性和非线性特征,提出一种基于变分模态分解的中期电力负荷混合预测模型(hybrid prediction model of medium-term power load based on ...电力负荷预测直接影响电网规划和运行,但是受到各类因素的影响。为提高预测精度,针对电力负数据时序性和非线性特征,提出一种基于变分模态分解的中期电力负荷混合预测模型(hybrid prediction model of medium-term power load based on variational mode decomposition,HPMMPL-VMD)。在HPMMPL-VMD算法中,首先使用VMD将原始电力负荷序列分解成若干个相对平稳的模态分量,并利用长短时记忆神经网络对各个模态分量进行建模;然后将各个预测分量进行叠加得到电力负荷预测值;最后,使用最小二乘支持向量回归对误差序列进行预测,并将电力负荷预测值与误差预测值相加得到最后预测结果。为验证HPMMPL-VMD的性能,选取其他预测方法与其进行比较,实验结果表明本文所提模型具有较高的预测精度。展开更多
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla...A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.展开更多
文摘电力负荷预测直接影响电网规划和运行,但是受到各类因素的影响。为提高预测精度,针对电力负数据时序性和非线性特征,提出一种基于变分模态分解的中期电力负荷混合预测模型(hybrid prediction model of medium-term power load based on variational mode decomposition,HPMMPL-VMD)。在HPMMPL-VMD算法中,首先使用VMD将原始电力负荷序列分解成若干个相对平稳的模态分量,并利用长短时记忆神经网络对各个模态分量进行建模;然后将各个预测分量进行叠加得到电力负荷预测值;最后,使用最小二乘支持向量回归对误差序列进行预测,并将电力负荷预测值与误差预测值相加得到最后预测结果。为验证HPMMPL-VMD的性能,选取其他预测方法与其进行比较,实验结果表明本文所提模型具有较高的预测精度。
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical processes.Compared with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.