多尺度熵(Multiscale entropy,MSE)是一种衡量时间序列复杂性的方法,针对其粗粒化过程由时间序列长度变短而导致熵值不精确、波动较大等问题,提出一种改进的多尺度熵(Improved multiscale entropy,IMSE)算法。在此基础上,结合迭代拉普...多尺度熵(Multiscale entropy,MSE)是一种衡量时间序列复杂性的方法,针对其粗粒化过程由时间序列长度变短而导致熵值不精确、波动较大等问题,提出一种改进的多尺度熵(Improved multiscale entropy,IMSE)算法。在此基础上,结合迭代拉普拉斯得分(Iteration Laplacian Score,ILS)特征选择和多变量预测模型(Variable predictive model based class discriminate,VPMCD),提出一种新的滚动轴承智能故障诊断方法。最后,将提出的方法应用于滚动轴承试验数据分析,并与现有方法进行对比。结果表明,提出的方法不仅能够有效地识别滚动状态和故障类型,而且其诊断效果优于现有方法。展开更多
文摘多尺度熵(Multiscale entropy,MSE)是一种衡量时间序列复杂性的方法,针对其粗粒化过程由时间序列长度变短而导致熵值不精确、波动较大等问题,提出一种改进的多尺度熵(Improved multiscale entropy,IMSE)算法。在此基础上,结合迭代拉普拉斯得分(Iteration Laplacian Score,ILS)特征选择和多变量预测模型(Variable predictive model based class discriminate,VPMCD),提出一种新的滚动轴承智能故障诊断方法。最后,将提出的方法应用于滚动轴承试验数据分析,并与现有方法进行对比。结果表明,提出的方法不仅能够有效地识别滚动状态和故障类型,而且其诊断效果优于现有方法。