期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Screening Promising CsV_(3)Sb_(5)-Like Kagome Materials from Systematic First-Principles Evaluation 被引量:1
1
作者 Yutao Jiang Ze Yu +4 位作者 Yuxin Wang Tenglong Lu Sheng Meng Kun Jiang Miao Liu 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第4期54-60,共7页
The Cs V_(3)Sb_(5) kagome lattice holds the promise for manifesting electron correlation,topology and superconductivity.However,by far only three Cs V_(3)Sb_(5)-like kagome materials have been experimentally spotted.W... The Cs V_(3)Sb_(5) kagome lattice holds the promise for manifesting electron correlation,topology and superconductivity.However,by far only three Cs V_(3)Sb_(5)-like kagome materials have been experimentally spotted.We enlarge this family of materials to 1386 compounds via element species substitution,and the further screening process suggests that 28 promising candidates have superior thermodynamic stability,hence they are highly likely to be synthesizable.Moreover,these compounds possess several unique electronic structures,and can be categorized into five non-magnetic and three magnetic groups accordingly.It is our hope that this work can greatly expand the viable phase space of the Cs V_(3)Sb_(5)-like materials for investigating or tuning the novel quantum phenomena in kagome lattice. 展开更多
关键词 tuning holds hence
下载PDF
Energy Landscape and Phase Competition of CsV_(3)Sb_(5),CsV_(6)Sb_(6)and TbMn_(6)Sn_(6)-Type Kagome Materials
2
作者 蔡光辉 姜昱韬 +5 位作者 周辉 喻泽 蒋坤 石友国 孟胜 刘淼 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期78-85,共8页
Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P... Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space. 展开更多
关键词 THERMODYNAMIC stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部