期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于少数类样本合成过抽样技术算法2型糖尿病合并周围神经病变风险预警模型构建 被引量:1
1
作者 庄翠侠 杨俊平 +4 位作者 王妍 刘思园 姜莉晴 季学磊 祝腊香 《临床军医杂志》 CAS 2023年第9期952-955,959,共5页
目的探讨2型糖尿病合并周围神经病变的危险因素,并基于少数类样本合成过抽样技术(SMOTE)算法构建2型糖尿病合并周围神经病变的风险预警模型。方法选取自2020年1月至2021年12月芜湖市第二人民医院收治的205例2型糖尿病患者为研究对象。... 目的探讨2型糖尿病合并周围神经病变的危险因素,并基于少数类样本合成过抽样技术(SMOTE)算法构建2型糖尿病合并周围神经病变的风险预警模型。方法选取自2020年1月至2021年12月芜湖市第二人民医院收治的205例2型糖尿病患者为研究对象。根据周围神经病变发生情况将患者分为周围神经病变组(n=70)和无周围神经病变组(n=135)。收集并记录患者的年龄、性别、病程、居住地、婚姻状态、体质量指数、文化程度、饮酒史、吸烟史、糖化血红蛋白、高血压、空腹血糖及合并糖尿病视网膜病变(DR)等资料。采用Logistic回归分析筛选2型糖尿病合并周围神经病变的危险因素,应用SMOTE算法构建2型糖尿病合并周围神经病变的预警模型。采用受试者工作特征(ROC)曲线对预警模型的预测效能进行分析。结果Logistic回归分析结果显示,年龄、病程、婚姻状态、体质量指数、文化程度、糖化血红蛋白、高血压及合并DR是2型糖尿病合并周围神经病变的危险因素(P<0.05)。原始预警模Logit(P_(1))H-L检验结果(决定系数R^(2)=0.352,P=0.328),提示Logistic回归模型的拟合度良好。基于SMOTE算法的预警模型Logit(P_(2))H-L检验结果(决定系数R^(2)=0.371,P=0.635),提示基于SMOTE算法的预警模型拟合度良好。原始预警模型的ROC曲线下面积为0.809,基于SMOTE算法的预警模型的ROC曲线下面积为0.927。结论年龄、病程、婚姻状态、体质量指数、文化程度、糖化血红蛋白、高血压及合并DR是2型糖尿病合并周围神经病变的危险因素,基于SMOTE算法的预警模型能够对2型糖尿病合并周围神经病变进行准确预测,可帮助临床制定周围神经病变的相关防治对策。 展开更多
关键词 2型糖尿病 周围神经病变 少数类样本合成过抽样技术算法 预警模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部