期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络和多信息融合的三维乳腺超声分类方法
被引量:
12
1
作者
孔小函
檀韬
+1 位作者
包凌云
王广志
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018年第4期414-422,共9页
乳腺肿瘤超声图像的自动分类对于提高医生的工作效率和降低漏诊率具有十分重要的意义。新型的三维乳腺超声数据包含更多的可用于诊断的信息,但由于超声成像机理导致不同方向上的图像表现不同。针对该种乳腺超声数据,利用卷积神经网络结...
乳腺肿瘤超声图像的自动分类对于提高医生的工作效率和降低漏诊率具有十分重要的意义。新型的三维乳腺超声数据包含更多的可用于诊断的信息,但由于超声成像机理导致不同方向上的图像表现不同。针对该种乳腺超声数据,利用卷积神经网络结构的灵活性和自动学习的特性,提出3种改进的卷积神经网络模型,使其分别可以接受横截面图像输入、横截面和冠状面的双图像输入、图像和文本信息同时输入,并研究不同信息的融合对于提升乳腺肿瘤自动分类准确率的影响。在研究中,采用880幅图像(良性401幅,恶性479幅)及其标注信息进行5折交叉验证实验,得到各模型的准确率及AUC。实验结果表明,设计的模型可以适应图片与文本信息的输入,多信息融合的模型比只接受图像输入的模型准确率提升2.91%,达到75.11%的准确率和0.829 4的AUC。这些模型的提出,为多信息融合的卷积神经网络分类应用提供参考。
展开更多
关键词
三维乳腺超声
医学图像分类
卷积神经网络
多信息融合
下载PDF
职称材料
题名
基于卷积神经网络和多信息融合的三维乳腺超声分类方法
被引量:
12
1
作者
孔小函
檀韬
包凌云
王广志
机构
清华大学医学院生物医学工程系
埃因霍温理工大学生物医学工程系
杭州市第一人民医院超声影像科
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018年第4期414-422,共9页
文摘
乳腺肿瘤超声图像的自动分类对于提高医生的工作效率和降低漏诊率具有十分重要的意义。新型的三维乳腺超声数据包含更多的可用于诊断的信息,但由于超声成像机理导致不同方向上的图像表现不同。针对该种乳腺超声数据,利用卷积神经网络结构的灵活性和自动学习的特性,提出3种改进的卷积神经网络模型,使其分别可以接受横截面图像输入、横截面和冠状面的双图像输入、图像和文本信息同时输入,并研究不同信息的融合对于提升乳腺肿瘤自动分类准确率的影响。在研究中,采用880幅图像(良性401幅,恶性479幅)及其标注信息进行5折交叉验证实验,得到各模型的准确率及AUC。实验结果表明,设计的模型可以适应图片与文本信息的输入,多信息融合的模型比只接受图像输入的模型准确率提升2.91%,达到75.11%的准确率和0.829 4的AUC。这些模型的提出,为多信息融合的卷积神经网络分类应用提供参考。
关键词
三维乳腺超声
医学图像分类
卷积神经网络
多信息融合
Keywords
3D breast ultrasound
medical image classification
convolutional neural networks
multiinformation fusion
分类号
R318 [医药卫生—生物医学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络和多信息融合的三维乳腺超声分类方法
孔小函
檀韬
包凌云
王广志
《中国生物医学工程学报》
CAS
CSCD
北大核心
2018
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部