期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Multi-Light模型的奶牛个体识别研究
被引量:
2
1
作者
付丽丽
李士军
+2 位作者
孔朔琳
宫鹤
李思函
《黑龙江畜牧兽医》
CAS
北大核心
2023年第3期41-45,51,132,133,共8页
为了解决大规模智能化奶牛养殖场对奶牛个体识别存在模型大、识别速度慢的问题,试验构建了一种用于识别奶牛个体的多尺度轻量化卷积神经网络(Multi-Light)模型,将拍摄的奶牛图像经过标注后利用DeepLab V3模型从复杂背景中分割出单头奶...
为了解决大规模智能化奶牛养殖场对奶牛个体识别存在模型大、识别速度慢的问题,试验构建了一种用于识别奶牛个体的多尺度轻量化卷积神经网络(Multi-Light)模型,将拍摄的奶牛图像经过标注后利用DeepLab V3模型从复杂背景中分割出单头奶牛图像;在Multi-Light模型中引入空洞卷积,保证该模型参数量不变的同时增强提取图像全局信息的能力;加入多尺度卷积模块增强该模型对不同尺度特征点的检测能力,在该模型中使用短路连接以保证特征不丢失,提升模型的识别精度;此外,利用通道注意力机制提高了该模型识别精度,同时使该模型具有更多的非线性;最后将分割得到的奶牛图像数据集输入Multi-Light模型进行训练。结果表明:Multi-Light模型对奶牛个体识别的精度达98.51%,高于其他经典模型对奶牛个体的识别率;与轻量级模型对比,Multi-Light模型的大小为5.86 MB,在具备高识别精度的前提下参数量较少。说明试验所搭建的Multi-Light模型克服了传统方法中需要对特征进行人为提取、提取特征方法不够鲁棒、识别模型参数量大及识别速度慢的缺点,为奶牛个体轻量化识别提供了参考。
展开更多
关键词
空洞卷积
多尺度
轻量化
奶牛识别
跳跃连接
下载PDF
职称材料
基于Transformer的强泛化苹果叶片病害识别模型
被引量:
11
2
作者
徐艳蕾
孔朔琳
+2 位作者
陈清源
高志远
李陈孝
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第16期198-206,共9页
模型泛化能力是病害识别模型多场景应用的关键,该研究针对不同环境下的苹果叶片病害数据,提出一种可以提取多类型特征的强泛化苹果叶片病害识别模型CaTNet。该模型采用双分支结构,首先设计了一种卷积神经网络分支,负责提取苹果叶片图像...
模型泛化能力是病害识别模型多场景应用的关键,该研究针对不同环境下的苹果叶片病害数据,提出一种可以提取多类型特征的强泛化苹果叶片病害识别模型CaTNet。该模型采用双分支结构,首先设计了一种卷积神经网络分支,负责提取苹果叶片图像的局部特征,其次构建了具有挤压和扩充功能的视觉Transformer分支,该分支能够提取苹果叶片图像的全局特征,最后将两种特征进行融合,使Transformer分支可以学习局部特征,使卷积神经网络分支学习全局特征。与多种卷积神经网络模型和Transformer模型相比,该模型具有更好的泛化能力,仅需学习实验室环境叶片数据,即可在自然环境数据下达到80%的识别精度,相较卷积神经网络EfficientNetV2的72.14%精度和Transformer网络PVT的52.72%精度均有较大提升,能够有效提升对不同环境数据的识别精度,解决了深度学习模型训练成本高,泛化能力弱的问题。
展开更多
关键词
图像识别
农业
卷积神经网络
苹果叶片病害
Transformer模型
强泛化性
特征融合
下载PDF
职称材料
题名
基于Multi-Light模型的奶牛个体识别研究
被引量:
2
1
作者
付丽丽
李士军
孔朔琳
宫鹤
李思函
机构
吉林农业大学信息技术学院
梧州学院电子与信息工程学院
吉林农业大学工程技术学院
出处
《黑龙江畜牧兽医》
CAS
北大核心
2023年第3期41-45,51,132,133,共8页
基金
国家重点研发计划项目(2018YFF0213606-03)
吉林省科技发展计划重点研发项目(20210202128NC)
+2 种基金
吉林省发展和改革委员会项目(2019C021)
长春市科技发展重点研发计划项目(21ZGN29
21ZGN27)。
文摘
为了解决大规模智能化奶牛养殖场对奶牛个体识别存在模型大、识别速度慢的问题,试验构建了一种用于识别奶牛个体的多尺度轻量化卷积神经网络(Multi-Light)模型,将拍摄的奶牛图像经过标注后利用DeepLab V3模型从复杂背景中分割出单头奶牛图像;在Multi-Light模型中引入空洞卷积,保证该模型参数量不变的同时增强提取图像全局信息的能力;加入多尺度卷积模块增强该模型对不同尺度特征点的检测能力,在该模型中使用短路连接以保证特征不丢失,提升模型的识别精度;此外,利用通道注意力机制提高了该模型识别精度,同时使该模型具有更多的非线性;最后将分割得到的奶牛图像数据集输入Multi-Light模型进行训练。结果表明:Multi-Light模型对奶牛个体识别的精度达98.51%,高于其他经典模型对奶牛个体的识别率;与轻量级模型对比,Multi-Light模型的大小为5.86 MB,在具备高识别精度的前提下参数量较少。说明试验所搭建的Multi-Light模型克服了传统方法中需要对特征进行人为提取、提取特征方法不够鲁棒、识别模型参数量大及识别速度慢的缺点,为奶牛个体轻量化识别提供了参考。
关键词
空洞卷积
多尺度
轻量化
奶牛识别
跳跃连接
Keywords
dilated convolution
multi-scale
light weighting
identification of cow
jump connection
分类号
S823 [农业科学—畜牧学]
下载PDF
职称材料
题名
基于Transformer的强泛化苹果叶片病害识别模型
被引量:
11
2
作者
徐艳蕾
孔朔琳
陈清源
高志远
李陈孝
机构
吉林农业大学信息技术学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第16期198-206,共9页
基金
吉林省科技厅国际科技合作项目(20200801014GH)
长春市科技局重点科技攻关项目(21ZGN28)。
文摘
模型泛化能力是病害识别模型多场景应用的关键,该研究针对不同环境下的苹果叶片病害数据,提出一种可以提取多类型特征的强泛化苹果叶片病害识别模型CaTNet。该模型采用双分支结构,首先设计了一种卷积神经网络分支,负责提取苹果叶片图像的局部特征,其次构建了具有挤压和扩充功能的视觉Transformer分支,该分支能够提取苹果叶片图像的全局特征,最后将两种特征进行融合,使Transformer分支可以学习局部特征,使卷积神经网络分支学习全局特征。与多种卷积神经网络模型和Transformer模型相比,该模型具有更好的泛化能力,仅需学习实验室环境叶片数据,即可在自然环境数据下达到80%的识别精度,相较卷积神经网络EfficientNetV2的72.14%精度和Transformer网络PVT的52.72%精度均有较大提升,能够有效提升对不同环境数据的识别精度,解决了深度学习模型训练成本高,泛化能力弱的问题。
关键词
图像识别
农业
卷积神经网络
苹果叶片病害
Transformer模型
强泛化性
特征融合
Keywords
image identification
agriculture
convolutional neural networks
apple leaf disease
Transformer model
strong generalization ability
feature fusion
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Multi-Light模型的奶牛个体识别研究
付丽丽
李士军
孔朔琳
宫鹤
李思函
《黑龙江畜牧兽医》
CAS
北大核心
2023
2
下载PDF
职称材料
2
基于Transformer的强泛化苹果叶片病害识别模型
徐艳蕾
孔朔琳
陈清源
高志远
李陈孝
《农业工程学报》
EI
CAS
CSCD
北大核心
2022
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部