在圆锥曲线的学习中,常常会遇到形如m·|PA|±n|PB|型的最值问题,若按常规思路,用两点间距离公式分别求出| PA |、|PB|,转化成目标函数求最值,往往非常繁或求不出解.若能换个角度思考,抓住圆锥曲线定义的本质,结合图形把问题转...在圆锥曲线的学习中,常常会遇到形如m·|PA|±n|PB|型的最值问题,若按常规思路,用两点间距离公式分别求出| PA |、|PB|,转化成目标函数求最值,往往非常繁或求不出解.若能换个角度思考,抓住圆锥曲线定义的本质,结合图形把问题转化成共线的情景,则此类问题不仅可迎刃而解,而且通过这样的训练,可加深学生对圆锥曲线概念的理解,进一步体会到数形的完美结合,给学生以极其快乐的数学美的享受.同时,还可培养学生的探索与创新能力.展开更多
文摘在圆锥曲线的学习中,常常会遇到形如m·|PA|±n|PB|型的最值问题,若按常规思路,用两点间距离公式分别求出| PA |、|PB|,转化成目标函数求最值,往往非常繁或求不出解.若能换个角度思考,抓住圆锥曲线定义的本质,结合图形把问题转化成共线的情景,则此类问题不仅可迎刃而解,而且通过这样的训练,可加深学生对圆锥曲线概念的理解,进一步体会到数形的完美结合,给学生以极其快乐的数学美的享受.同时,还可培养学生的探索与创新能力.