期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
电能表健康度分析及整体运行状态预测方法 被引量:17
1
作者 肖坚红 赵永红 +3 位作者 薛晓茹 孙承露 吴少雄 武文广 《电网与清洁能源》 北大核心 2016年第7期77-80,86,共5页
通过基于"厂商+批次"对电能表整体运行状态进行分析,不仅可以发现电能表的运行故障率呈现出明显的层次分布,同时还能发现家族性的问题或者缺陷,实现基于传统的人工经验诊断转变为基于机器学习智能分析预测。第一阶段:以厂商... 通过基于"厂商+批次"对电能表整体运行状态进行分析,不仅可以发现电能表的运行故障率呈现出明显的层次分布,同时还能发现家族性的问题或者缺陷,实现基于传统的人工经验诊断转变为基于机器学习智能分析预测。第一阶段:以厂商和生产批次为对象,通过对电能表状态的故障率、报废费和折旧率进行分析,将所有电能表的分析数据降维整合为"非健康度曲线"的一维数据,且利用散点图将分析对象非健康值展现。不仅能告诉我们每个批次电能表的现状,还能告诉我们哪些批次存在问题,根据不同的预警等级,确定电能表故障的严重性。第二阶段:通过对电能表工作状态和工作环境实时监测,借助机器学习中线性回归的算法,诊断、预测电能表的实际运行状态,预测电能表非健康度值变化趋势。基于上述二个阶段的分析,为电能表状态检修、备品备件等工作提供辅助决策依据。 展开更多
关键词 非健康值 线性回归 数据挖掘分析 整体状态分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部