研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient ...研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient equations with Neumann problem has studied. By choosing suitable auxiliary functions, using the maximum principle and the properties of basic symmetric functions, with the f1/k−l∈C1(Ω¯×ℝn)condition, the global gradient estimation for the admissible solution of the equations with dependent on x and Du has obtained.展开更多
文摘研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient equations with Neumann problem has studied. By choosing suitable auxiliary functions, using the maximum principle and the properties of basic symmetric functions, with the f1/k−l∈C1(Ω¯×ℝn)condition, the global gradient estimation for the admissible solution of the equations with dependent on x and Du has obtained.