电磁暂态过程是双馈型风力发电机低电压穿越(low voltage ride through,LVRT)问题的关键所在,对其准确分析是探究和提高风电机组LVRT运行性能的基础和依据。鉴于常规分析进行较多的假定与近似,难以准确地描述这一电磁暂态过程。文章从...电磁暂态过程是双馈型风力发电机低电压穿越(low voltage ride through,LVRT)问题的关键所在,对其准确分析是探究和提高风电机组LVRT运行性能的基础和依据。鉴于常规分析进行较多的假定与近似,难以准确地描述这一电磁暂态过程。文章从双馈电机数学模型出发,运用解析运算的方式对故障时电机的电磁暂态过程进行详细推导和深入分析,并借助叠加原理和拉普拉斯变换方法逐步推导出电机定、转子磁链和电流的解析表达式,并在此基础上讨论了电磁暂态过程的重要特征。最后,通过仿真验证推导的正确性以及解析表达式的准确度。所得解析表达式不仅能够为相关LVRT策略的提出提供理论依据,而且能够为大型风电场建模,尤其是考虑电力系统稳定性的仿真建模提供理论参考。展开更多
在对电网故障时双馈电机电磁暂态过程进行深入分析的基础上,针对故障状态下转子端过电压主要由定子磁链直流分量及负序分量引起这一结论,提出一种有效的LVRT控制策略。该策略以降低转子端电压,尤其故障初期转子端电压为首要目标。在双...在对电网故障时双馈电机电磁暂态过程进行深入分析的基础上,针对故障状态下转子端过电压主要由定子磁链直流分量及负序分量引起这一结论,提出一种有效的LVRT控制策略。该策略以降低转子端电压,尤其故障初期转子端电压为首要目标。在双馈电机转子侧适时准确地注入暂态补偿量,并对补偿量相位角进行优化控制。从而最大限度减小暂态转子电压冲击,提高双馈电机的暂态可控性,拓展可穿越的电压故障范围,进而改善双馈风电机组的LVRT性能。11 k W模拟机组的实验验证该文的分析和设计。展开更多
文摘电磁暂态过程是双馈型风力发电机低电压穿越(low voltage ride through,LVRT)问题的关键所在,对其准确分析是探究和提高风电机组LVRT运行性能的基础和依据。鉴于常规分析进行较多的假定与近似,难以准确地描述这一电磁暂态过程。文章从双馈电机数学模型出发,运用解析运算的方式对故障时电机的电磁暂态过程进行详细推导和深入分析,并借助叠加原理和拉普拉斯变换方法逐步推导出电机定、转子磁链和电流的解析表达式,并在此基础上讨论了电磁暂态过程的重要特征。最后,通过仿真验证推导的正确性以及解析表达式的准确度。所得解析表达式不仅能够为相关LVRT策略的提出提供理论依据,而且能够为大型风电场建模,尤其是考虑电力系统稳定性的仿真建模提供理论参考。
文摘在对电网故障时双馈电机电磁暂态过程进行深入分析的基础上,针对故障状态下转子端过电压主要由定子磁链直流分量及负序分量引起这一结论,提出一种有效的LVRT控制策略。该策略以降低转子端电压,尤其故障初期转子端电压为首要目标。在双馈电机转子侧适时准确地注入暂态补偿量,并对补偿量相位角进行优化控制。从而最大限度减小暂态转子电压冲击,提高双馈电机的暂态可控性,拓展可穿越的电压故障范围,进而改善双馈风电机组的LVRT性能。11 k W模拟机组的实验验证该文的分析和设计。