针对使用传统方法识别评估滑雪运动员的训练动作存在人为主观、准确率低等问题,提出了一种基于改进OpenPose和YOLOv5(You Only Look Once version 5)的动作分析算法。利用CSP-Darknet53(Cross Stage Paritial-Network 53)作为OpenPose...针对使用传统方法识别评估滑雪运动员的训练动作存在人为主观、准确率低等问题,提出了一种基于改进OpenPose和YOLOv5(You Only Look Once version 5)的动作分析算法。利用CSP-Darknet53(Cross Stage Paritial-Network 53)作为OpenPose外部网络将输入图片降维处理并提取特征图。融合优化YOLOv5算法,提取人体骨骼关键点构成人体骨架与标准动作进行对比,根据角度信息评分,并在模型中加入损失函数,量化实际检测动作与标准动作的误差。该模型可对运动员动作即时监控,能完成初步的动作评估。实验结果表明,检测识别准确率达到95%,可满足日常滑雪训练需求。展开更多
文摘针对使用传统方法识别评估滑雪运动员的训练动作存在人为主观、准确率低等问题,提出了一种基于改进OpenPose和YOLOv5(You Only Look Once version 5)的动作分析算法。利用CSP-Darknet53(Cross Stage Paritial-Network 53)作为OpenPose外部网络将输入图片降维处理并提取特征图。融合优化YOLOv5算法,提取人体骨骼关键点构成人体骨架与标准动作进行对比,根据角度信息评分,并在模型中加入损失函数,量化实际检测动作与标准动作的误差。该模型可对运动员动作即时监控,能完成初步的动作评估。实验结果表明,检测识别准确率达到95%,可满足日常滑雪训练需求。