期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进PointNet++模型在道路杆状物提取中的应用
1
作者
孙端正
高飞
+3 位作者
叶周润
吴言安
张树峰
谢荣晖
《测绘通报》
CSCD
北大核心
2023年第11期95-99,共5页
针对现有道路杆状物提取大多需要针对数据类型人工设计特征、泛用性差、自动化程度低等问题,本文提出一种基于改进PointNet++深度学习网络的道路杆状物语义分割方法,实现了对道路杆状物的提取。首先对原网络模型的感受野、分块大小等参...
针对现有道路杆状物提取大多需要针对数据类型人工设计特征、泛用性差、自动化程度低等问题,本文提出一种基于改进PointNet++深度学习网络的道路杆状物语义分割方法,实现了对道路杆状物的提取。首先对原网络模型的感受野、分块大小等参数进行调整,使得该模型更适合道路点云数据;然后针对点云数据不平衡的问题,采用焦点损失函数作为模型的损失函数,使占比较少的类别得到充分训练;最后针对PointNet++网络提取特征时没有考虑邻域内各点特征影响关系的问题,采用邻域特征聚合模块融合邻域信息,提升该网络模型对点云特征的学习能力。为验证所提方法的有效性,使用改进后的网络模型在自建的道路点云组成的数据集上进行了试验,相对于经典PointNet++网络,杆状物类的分割精度明显提升,在简单道路和复杂道路上的交并比(IoU)分别提升了8.44%、15.25%,达到了98.88%、92.50%。
展开更多
关键词
三维激光点云
语义分割
PointNet++
杆状物
深度学习
下载PDF
职称材料
题名
改进PointNet++模型在道路杆状物提取中的应用
1
作者
孙端正
高飞
叶周润
吴言安
张树峰
谢荣晖
机构
合肥工业大学土木与水利工程学院
中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室
安徽开源路桥有限责任公司
出处
《测绘通报》
CSCD
北大核心
2023年第11期95-99,共5页
基金
国家自然科学青年科学基金(41904010)
安徽省自然科学基金(2008085MD115)
中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室开放基金(SKLGED2022-1-4)。
文摘
针对现有道路杆状物提取大多需要针对数据类型人工设计特征、泛用性差、自动化程度低等问题,本文提出一种基于改进PointNet++深度学习网络的道路杆状物语义分割方法,实现了对道路杆状物的提取。首先对原网络模型的感受野、分块大小等参数进行调整,使得该模型更适合道路点云数据;然后针对点云数据不平衡的问题,采用焦点损失函数作为模型的损失函数,使占比较少的类别得到充分训练;最后针对PointNet++网络提取特征时没有考虑邻域内各点特征影响关系的问题,采用邻域特征聚合模块融合邻域信息,提升该网络模型对点云特征的学习能力。为验证所提方法的有效性,使用改进后的网络模型在自建的道路点云组成的数据集上进行了试验,相对于经典PointNet++网络,杆状物类的分割精度明显提升,在简单道路和复杂道路上的交并比(IoU)分别提升了8.44%、15.25%,达到了98.88%、92.50%。
关键词
三维激光点云
语义分割
PointNet++
杆状物
深度学习
Keywords
3D laser point cloud
semantic segmentation
PointNet++
rod
deep learning.
分类号
P208 [天文地球—地图制图学与地理信息工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进PointNet++模型在道路杆状物提取中的应用
孙端正
高飞
叶周润
吴言安
张树峰
谢荣晖
《测绘通报》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部