Hexagonal yttrium hydroxide fluoride microcrystals were prepared by a two-step hydrothermal routte using yttrium nitrate, sodium hydroxide and sodium fluoride as raw materials to react in propanetriol solvent. The sam...Hexagonal yttrium hydroxide fluoride microcrystals were prepared by a two-step hydrothermal routte using yttrium nitrate, sodium hydroxide and sodium fluoride as raw materials to react in propanetriol solvent. The samples were characterized by powder X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier trans- form infrared spectroscopy (FT-1R), thermogravimetre and differential-thermogravimetric analysis (TG-DTA), which revealed that Y(OH)2.14F0.86 microerystals were multi-branched and that the branches of Y(OH)2A4F0.86 microcrystals were composed of hierarchical tubes. This novel multi-branched and intriguing hierarchical tubular structure of yttrium hydroxide fluoride maybe has a potential application in photoelectric crystals. The formation of branched Y(OH)2.14F0.86 microcrystals with hierarchical tubular structure were due to the substitution reaction and Oswald ripening.展开更多
Cubic and hexagonal sodium yttrium fluoride were successfully synthesized from yttrium nitrate, sodium fluoride and polyethanediol in propanetriol solvent under a facile hydrothermal route. By regulating the molar rat...Cubic and hexagonal sodium yttrium fluoride were successfully synthesized from yttrium nitrate, sodium fluoride and polyethanediol in propanetriol solvent under a facile hydrothermal route. By regulating the molar ratio of yttrium and fluoride, hydrothermal temperature and reaction time, the phase and shape of sodium yttrium fluoride were commendably controlled. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS) techniques. It was revealed that the hollow-structured Na(Y1.5Na0.5)F6 nanotubes self-assembled and arrayed orientedly to be bamboo raft-shaped. The formation of hexagonal Na(Y1.5Na0.5)F6 nanotube arrays was attributed to solid-liquid-solid process and Oswald ripening. This study provided a simple method to prepare hexagonal bamboo raft-shaped Na(Y1.5Na0.5)F6 on a large scale, which broadened their practical applications.展开更多
基金Project supported by the China Postdoctoral Science Foundation (20100480947 and 201104510)Postdoctoral Science Foundation of Central South University (1332-74341015511)+1 种基金Doctor Startup Foundation of Hunan University of Science and Technology (E51079)Education and Teaching Fund of Hunan University of Science and Technology (G30953)
文摘Hexagonal yttrium hydroxide fluoride microcrystals were prepared by a two-step hydrothermal routte using yttrium nitrate, sodium hydroxide and sodium fluoride as raw materials to react in propanetriol solvent. The samples were characterized by powder X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier trans- form infrared spectroscopy (FT-1R), thermogravimetre and differential-thermogravimetric analysis (TG-DTA), which revealed that Y(OH)2.14F0.86 microerystals were multi-branched and that the branches of Y(OH)2A4F0.86 microcrystals were composed of hierarchical tubes. This novel multi-branched and intriguing hierarchical tubular structure of yttrium hydroxide fluoride maybe has a potential application in photoelectric crystals. The formation of branched Y(OH)2.14F0.86 microcrystals with hierarchical tubular structure were due to the substitution reaction and Oswald ripening.
基金Project supported by National Natural Science Foundation of China (51202066)China Postdoctoral Science Foundation Project (20100480947,201104510)+2 种基金Scientific Research Found of Hunan Provincial Education Department (12A047)State Key Laboratory Program of Inorganic Synthesis and Preparative Chemistry of China (2013-26)Doctoral Start-up Research Fund of Hunan University of Science and Technology (E51079)
文摘Cubic and hexagonal sodium yttrium fluoride were successfully synthesized from yttrium nitrate, sodium fluoride and polyethanediol in propanetriol solvent under a facile hydrothermal route. By regulating the molar ratio of yttrium and fluoride, hydrothermal temperature and reaction time, the phase and shape of sodium yttrium fluoride were commendably controlled. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS) techniques. It was revealed that the hollow-structured Na(Y1.5Na0.5)F6 nanotubes self-assembled and arrayed orientedly to be bamboo raft-shaped. The formation of hexagonal Na(Y1.5Na0.5)F6 nanotube arrays was attributed to solid-liquid-solid process and Oswald ripening. This study provided a simple method to prepare hexagonal bamboo raft-shaped Na(Y1.5Na0.5)F6 on a large scale, which broadened their practical applications.